• Title/Summary/Keyword: size of graphite

Search Result 244, Processing Time 0.023 seconds

Recovery sub micron-graphitized carbon from oil fly ash

  • Hsieh, Ya-Min;Tsai, Min-Sing;Tsai, Shang-Lin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.633-637
    • /
    • 2001
  • Oil fly ash is known as one source of raw materials from which vanadium and nickel metals can be recovered. The current recovery process of valuable metals from oil fly ash is mainly the hydrormetallurgy one. Nevertheless, a great amount about 50~80%, of unburned carbon remains as byproduct after hydrormetallursy process. In Taiwan, if hydrormetallursy processes have proceeded, it can be estimated that the annual production of unburned carbon is 25 thousand tons. From the viewpoint of resource recycling, this study is a preliminary study and investigates in recovery of sub micron- graphitized carbon from unburned carbon by a designed process. The designed process included the following steps: 1.selecting a portion with +400mesh size from unburned carbon; 2.treating the selected in ultrasonic waves; 3.using a 400mesh sieve to obtain the product which is under 400mesh; 4.Removal ash from the product. In regard to treatment by ultrasonic waves in the designed process, treating time of ultrasonic waves is a simple and only variance in this study. The results indicate that the production yields increase with the treating time of ultrasonic waves; the production yield in specific conditions of this study can reach about 23%, in which ash content in product is about 2.5%. According to results of SEM, TEM and XRD, the products from the designed process are flakes in shape, several microns in size and graphitized carbon in carbon crystal phase. Except to graphitized carbon, there are a little carbon blacks, which are graphite 2H in carbon crystal phase in the products. Conclusively, the designed process is possibly applicable, by which comes to the recovery of micron- graphitized carbon.

  • PDF

The Effect of Internal Chills on the Solidified Structure and Chemical Segregation (응고조직 및 성분편석에 미치는 내부냉금의 효과)

  • Kim, Myeong-Han;Jo, Hyeon-Nam;Kim, Jeong-Gyeom;Jo, Hyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.883-889
    • /
    • 1999
  • The pure Al or-(1,2,3wt%)Cu alloy internal chill with 4,6,8,12 and 15mm ø, respectively, was inserted at the center of a graphite mold with the size of 95mm ø$\times$200mm H. The molten metal with the same composition as the internal chill was poured into the mold at the pouring temperature of $750^{\circ}C$ and the cooling rates, solidified structures and chemical segregation were analyzed. The results represented that there was remarkable increased in cooling rate as well as decrease in grain size, secondary dendrite arm spacing and chemical segregation as the ratio of ingot to internal chill diameter was increased to 8. However there was a considerable drop of the internal chill effect when this ratio exceeded 8, resulting from incomplete melting of internal chills. The optimum ratio for the maximum internal chill effect of pure Al and-(1,2,3wt%)Cu allolys was 8 at the given pouring temperature.

  • PDF

A Study on Microstructure and Mechanical Properties of IF Steel Cube Fabricated by Multi-Axial Diagonal Forging Ver.1 and Ver.2 Processes (다축대각단조(MADF) Ver.1 및 Ver.2 공정으로 가공한 IF Steel의 미세조직 및 기계적 성질에 대한 연구)

  • Jeong, D.H.;Jo, Y.Y.;Kwon, S.C.;Kim, S.T.;Lee, S.;Choi, S.H.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.306-310
    • /
    • 2021
  • In this study, IF steel, which has a body-centered cubic (BCC) crystal structure, was fabricated as a 25 mm-long cube, and then processed for one cycle without intermediate heat treatment by applying MADF Ver.1 and Ver.2 processes. MADF processing was performed with graphite lubrication for each pass at room temperature. The development of the microstructure and texture was analyzed and compared by the location of the specimen using EBSD measurements of the IF steel. Vickers hardness test and miniature tensile test were also performed to analyze the mechanical properties. The coarse grain size of 742.6 ㎛ of the as-received IF steel was refined to a grain size of 53.0 ㎛ after one cycle of MADF Ver.1 processing and 27.0 ㎛ after MADF Ver.2 processing. Vicker's hardness of the as-received IF steel at 94 Hv was increased to 185.6 Hv and 191.2 Hv after one cycle of MADF Ver.1 and Ver.2 processing, respectively.

A grid-line suppression technique based on the nonsubsampled contourlet transform in digital radiography

  • Namwoo Kim;Taeyoung Um;Hyun Tae Leem;Bon Tack Koo;Kyuseok Kim;Kyu Bom Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.655-668
    • /
    • 2023
  • In radiography, an antiscatter grid is a well-known device for eliminating unexpected x-ray scatter. We investigate a new stationary grid artifact suppression method based on a nonsubsampled contourlet transform (NSCT) incorporated with Gaussian band-pass filtering. The proposed method has an advantage that extracts the Moiré components while minimizing the loss of image information and apply the prior information of Moiré component positions in multi-decomposition sub-band images. We implemented the proposed algorithm and performed a simulation and an experiment to demonstrate its viability. We did this experiment using an x-ray tube (M-113T, Varian, focal spot size: 0.1 mm), a flat-panel detector (ROSE-M Sensor, Aspenstate, pixel dimension: 3032 × 3800 pixels, pixel size: 0.076 mm), and carbon graphite-interspaced grids (JPI Healthcare, 18 cm × 24 cm, line density: 103 LP/inch and 150 LP/inch, ratio: 5:1, focal distance: 65 cm). Our results indicate that the proposed method successfully suppressed grid artifacts by reducing them without either reducing the spatial resolution or causing negative side effects. Consequently, we anticipate that the proposed method can improve image acquisition in a stationary grid x-ray system as well as in extended x-ray imaging.

Geochemistry and Mineralogy of Metapelite and Barium-Vanadium Muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea (덕평지역(德平地域)의 옥천누층군(沃川累層群)에 분포(分布)하는 변성이질암(變成泥質岩)과 바륨-바나듐 백운모(白雲母)의 지구화학적(地球化學的) 및 광물학적(鑛物學的) 특성(特性))

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.35-49
    • /
    • 1997
  • The coal formation of the Deokpyeong area are interbedded along metapelites of the Ogcheon Supergroup, which are composed mainly of graphite, quartz, muscovite and associated with small amounts of biotite, chlorite, pyrite and barite. The ratios of $SiO_2/Al_2O_3$, $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ of the coaly metapelite are variable and wide range from 1.80 to 10.21, from 27.8 to 388.8 and from 7.6 to 61.8, respectively. These coal formation were deposited in basin of marine environments, and the REE of these rocks are not influenced with metamorphism and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, the ratios of La/Ce (0.19 to 0.99) and Th/U (0.02 to 4.75). These rocks also show much variation in $La_N/Yb_N$ (1.19 to 22.89), Th/Yb (0.14 to 21.43) and La/Th (0.44 to 13.67), and their origin is explained by derivation from a mixture of sedimentary and igneous rocks. The wide range in trace and REE element characteristics as Co/Th (0.12 to 2.78), La/Sc (0.33 to 10.18), Sc/Th (0.57 to 5.73), V/Ni (8 to 2347), Cr/V (0.02 to 0.67) and Ni/Co (1.56 to 32.95) of these coaly metapelites argues for inefficient mixing of the various source lithologies during sedimentation. Deep to pale green barium-vanadium muscovites (vanadium-oellacherite) have been found in this coal formations. Modes of occurrence and grain size of muscovite are heterogeneous, but most of the barium and vanadium-bearing muscovites occur along the boundaries between graphite and quartz grains, ranging from 200 to $350{\mu}m$ in length and from 40 to $60{\mu}m$ in width. Results of X-ray diffraction data of the minerals characterized to be monoclinic system with $a=5.249{\AA}$, $b=8.939{\AA}$, $c=20.924{\AA}$ and ${\beta}=95.894^{\circ}$. Representative chemical formula of the muscovite was $(Na_{0.09}K_{1.44}Ba_{0.46})(Al_{2.75}Ti_{0.07}V_{0.56}Fe_{0.08}Mg_{0.50})(Si_{6.12}Al_{1.88})O_{22}$. The V possibly substitute octahedral Al, and the Ba is coupled substitution of $K^+Si^{4+}=Ba^{2+}Na^+Ca^{2+}$, which compositional ranges of V and Ba are from 0.42 to 0.69 and from 0.34 to 0.56 based on $O_{22}$, respectively. Formation mechanism of the barium-vanadium muscovites in the coaly metapelite is shown that the formed by high pressure and temperature from regional metamorphism origanated during diagenesis at the interface between a basinal brine and organic matter.

  • PDF

The quality investigation of 6H-SiC crystals grown by conventional PVT method with various SiC powders

  • Yeo, Im-Gyu;Lee, Won-Jae;Shin, Byoung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.113-114
    • /
    • 2009
  • Silicon carbide is one of the most attractive and promising wide band-gap semiconductor material with excellent physical properties and huge potential for electronic applications. Up to now, the most successful method for growth of large SiC crystals with high quality is the physical vapor transport (PVT) method [1, 2]. Since further reduction of defect densities in larger crystal are needed for the true implementation of SiC devices, many researchers are focusing to improve the quality of SiC single crystal through the process modifications for SiC bulk growth or new material implementations [3, 4]. It is well known that for getting high quality SiC crystal, source materials with high purity must be used in PVT method. Among various source materials in PVT method, a SiC powder is considered to take an important role because it would influence on crystal quality of SiC crystal as well as optimum temperature of single crystal growth, the growth rate and doping characteristics. In reality, the effect of powder on SiC crystal could definitely exhibit the complicated correlation. Therefore, the present research was focused to investigate the quality difference of SiC crystal grown by conventional PVT method with using various SiC powders. As shown in Fig. 1, we used three SiC powders with different particles size. The 6H-SiC crystals were grown by conventional PVT process and the SiC seeds and the high purity SiC source materials are placed on opposite side in a sealed graphite crucible which is surrounded by graphite insulation[5, 6]. The bulk SiC crystal was grown at $2300^{\circ}C$ of the growth temperature and 50mbar of an argon pressure. The axial thermal gradient across the SiC crystal during the growth is estimated in the range of $15\sim20^{\circ}C/cm$. The chemical etch in molten KOH maintained at $450^{\circ}C$ for 10 min was used for defect observation with a polarizing microscope in Nomarski mode. Electrical properties of bulk SiC materials were measured by Hall effect using van der Pauw geometry and a UV/VIS spectrophotometer. Fig. 2 shows optical photographs of SiC crystal ingot grown by PVT method and Table 1 shows electrical properties of SiC crystals. The electrical properties as well as crystal quality of SiC crystals were systematically investigated.

  • PDF

Adsorption Characteristics of Acetone, Benzene and Methyl Mercaptan according to the Surface Chemistry and Pore Structure of Activated Carbons Prepared from Waste Citrus Peel in the Fixed Bed Adsorption Reactor (고정층 흡착 반응기에서 폐감귤박 활성탄의 표면 화학적 특성과 세공구조에 따른 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.237-243
    • /
    • 2018
  • The surface chemistry of WCK-AC, WCN-AC and WCZ-AC which are activated carbons prepared from waste citrus peel using KOH, NaOH, and $ZnCl_2$ as activating chemicals were investigated. Also the relationships between the adsorption capacities of the target gases such as acetone, benzene and methyl mercaptan (MM) by the prepared activated carbons and the pore characteristics of each activated carbon were examined. According to XPS analysis of the prepared activated carbons, graphite and phenolic were the main surface functional groups of C1, and the sum of phenol, carbonyl and carboxyl groups increased in the order of WCK-AC > WCN-AC > WCZ-AC. The breakthrough curves obtained from the adsorption experiments for the three target gases in the fixed bed adsorption reactor were well simulated by the empirical equations proposed by Yoon and Nelson. The adsorption capacity for acetone, benzene and MM was larger for activated carbons with the larger sum of surface functional groups. The larger the specific surface area and the pore volume of activated carbons and the smaller the pore size, the better the adsorption performance. In particular, the specific surface area was the best criterion for the adsorption performance of activated carbons used in this study.

$Si_3N_4$ Coating for Improvement of Anti-oxidation and Anti-wear Properties by Low Pressure Chemical Vapor Deposition (저압화학기상증착법에 의한 $Si_3N_4$ 내산화.내마모 코팅)

  • Lee, Seung-Yun;Kim, Ok-Hee;Yeh, Byung-Hahn;Jung, Bahl;Park, Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.835-841
    • /
    • 1995
  • The deposition properties of Si$_3$N$_4$ deposited by low pressure chemical vapor deposition were studied to evaluate Si$_3$N$_4$as part of multi-layer coatings for anti-oxidation and anti-wear coating of graphite in the propellant-burning environment. Si$_3$N$_4$was deposited on the pack-SiC coated graphite and the tendencies of deposition rate and surface morphology changes with temperatures and reaction gas ratios were investigated. In low deposition temperatures the deposition rate increased tilth increasing temperature but in high temperatures the deposition rate decreased with increasing temperature. The grain size of Si$_3$N$_4$decreased with increasing temperature. In condition that the range of reaction gas ratios is 20$\leq$NH$_3$/SiH$_4$$\leq$40, the deposition rate and surface morphology did not change. The Si$_3$N$_4$deposited at 800~130$0^{\circ}C$ was amorphous, and by post-annealing at 130$0^{\circ}C$ in a $N_2$ambient, the Si$_3$N$_4$crystalized.

  • PDF

A Study on the Recreated Experiment and Casting Method of Ancient Iron Seated Buddha by Spilt Casting Method (분할주조법을 이용한 고대 철불의 재현실험 및 주조법 연구)

  • Park, June Yeong;Jung, Da Yeon;Han, Min Su;Lee, Joo Wan;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.3
    • /
    • pp.234-242
    • /
    • 2022
  • The study aimed to investigate the split casting method based on the recreation of the iron-seated Buddha (ISB) statue (number 1971) in the Chuncheon Museum. The statue was designed using three-dimensional scan data and reduced to half-size. Using the existing research results, the ISB statue was created by mold production and split casting. The mold was prepared by mixing sand and clay at a ratio of 3:4 and 1:3 on the outside and inside, respectively, and then casting was done. Various casting defects were observed in the ISB casting and similar shapes were seen. The casting defects included veining or finning, misrun, open or external shrinkage, surface or subsurface blowholes, surface pinholes, and shift. The microstructures were identified as branch-shaped dendrite and pearlite organizations, and black graphite was observed between the cementite organizations. The study findings may be relevant in exploring traditional casting and manufacturing techniques of ISB and may aid in the production of the original form of ISB.

Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron (회주철의 미세구조와 인장거동 분석 및 확률론적 피로수명평가)

  • Sung, Yong Hyeon;Han, Seung-Wook;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.721-728
    • /
    • 2017
  • High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.