References
- M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150, 322-327 (2008). https://doi.org/10.1016/j.jhazmat.2007.04.118
- M. M. Mohamed, Acid dye removal: Comparison of surfactant modified mesoporous FSM-16 with activated carbon derived from rice husk, J. Colloid Int. Sci., 272, 28-34 (2004). https://doi.org/10.1016/j.jcis.2003.08.071
- M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surf. A, 312, 131-135 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.040
- M. Valix, W. H. Cheung, and G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56, 493-501 (2004). https://doi.org/10.1016/j.chemosphere.2004.04.004
-
R. L. Tseng, S. K. Tseng, and F. C. Wu, Preparation of high surface area carbons from corncob using KOH combined with
$CO_2$ gasification for the adsorption of dyes and phenols from water, Colloids Surf. A, 279, 69-78 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.042 - A. Ahmad and B. Hameed, Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon, J. Hazard. Mater., 172, 1538-1543 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.025
- A. Khaled, A. E. Nemr, A. El-Sikaily, and O. Abdelwahab, Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies, J. Hazard. Mater., 165, 100-110 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.122
- N. Kannan and M. M. Sundaram, 2001, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - A comparative study, Dyes Pigm., 51, 25-40 (2001). https://doi.org/10.1016/S0143-7208(01)00056-0
-
K. H. Kang, S. K. Kam, and M. G. Lee, Preparation of activated carbon from waste citrus peels by
$ZnCl_2$ , J. Environ. Sci. Int., 16, 1091-1098 (2007). https://doi.org/10.5322/JES.2007.16.9.1091 - K. H. Kang, S. K. Kam, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by NaOH activation, J. Environ. Sci. Int., 16, 1279-1285 (2007). https://doi.org/10.5322/JES.2007.16.11.1279
- S. K. Kam, K. H. Kang, and M. G. Lee, Characterisitics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017). https://doi.org/10.14478/ACE.2017.1073
- T. Cheng, Y. Jiang, Y. Zhang, and S. Liu, Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed, Carbon, 42, 3081-3085 (2004). https://doi.org/10.1016/j.carbon.2004.07.021
- Z. Huang, F. Kang, K. Liang, and J. Hao, Breakthrough of methylketone and benzene vapors in activated carbon fiber beds, J. Hazard. Mater., B98, 107-115 (2003).
- Y. C. Chiang, P. C. Chiang, and C. P. Huang, Effect of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39, 523-534 (2001). https://doi.org/10.1016/S0008-6223(00)00161-5
-
R. Harikrishnan, M. P. Srinivasan, and C. B. Ching, Adsorption of ethyl benzene on activated carbon from supercritical
$CO_2$ , AIChE J., 44, 2620-2627 (1998). https://doi.org/10.1002/aic.690441205 - L. Li, S. Liu, and J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater., 192, 683-690 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.069
- J. K. Lim, S. W. Lee, S. K. Kam, D. W. Lee, and M. G. Lee, Adsorption characteristics of toluene vapor in fixed-bed activated carbon column, J. Environ. Sci. Int., 14, 61-69 (2005). https://doi.org/10.5322/JES.2005.14.1.061
- S. W. Lee, S. K. Bae, J. H. Kwon, Y. S. Na, C. D. An, Y. S. Yoon, and S. K. Song, Correlations between pore structure of activated carbon and adsorption characteristics of acetone vapor, J. Korean Soc. Environ. Eng., 27, 620-625 (2005).
- M. G. Lee, S. W. Lee, and S. H. Lee, Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor, Korean J. Chem. Eng., 23, 773-778 (2006). https://doi.org/10.1007/BF02705926
- M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surf. A, 312, 131-135 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.040
- M. K. Hafshejani, A. Langari, and M. Khazaei, Adsorption of acetone from polluted air by activated carbon derived from low cost materials, Life Sci. J., 10, 3658-3661 (2013).
- J.-H. Tsai, H.-M. Chiang, G.-Y. Huang, and H.-L. Chiang, Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers, J. Hazard. Mater., 154, 1183-1191 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.065
- R. R. Bansode, J. N. Losso, W. E. Marshall, R. M. Rao, and R. J. Portier, Adsorption of volatile organic compounds by pecan shell and almond shell-based granular activated carbons, Bioresour. Technol., 90, 175-184 (2003). https://doi.org/10.1016/S0960-8524(03)00117-2
- S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metyl mercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669 (2017). https://doi.org/10.14478/ACE.2017.1074
- S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metyl mercaptan in the fixed bed reactor packed with activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(1), 28-36 (2018). https://doi.org/10.14478/ACE.2017.1094
- Z. H. Huang, F. Kang, Y. P. Zheng, J. B. Yang, and K. M. Liang, Adsorption of trace polar methyl-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers, Carbon, 40, 1363-1367 (2002). https://doi.org/10.1016/S0008-6223(01)00292-5
- J. M. Thomas, E. L. Evans, M. Barber, and P. Swift, Determination of the occupancy of valence bands in graphite, diamond and less-ordered carbons by X-ray photo-electron spectroscopy, Trans. Faraday Soc., 67, 1875-1886 (1971). https://doi.org/10.1039/tf9716701875
- C. Moreno-Castilla, M. V. Lopez-Ramon, and F. Carrasco-Marin, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 38, 1995-2001 (2000). https://doi.org/10.1016/S0008-6223(00)00048-8
- J. H. Yoon and G. O. Nelson, Application of gas adsorption kinetics: I. A theoretical model for respirator cartridge service life, AIHA J., 45, 509-516 (1984). https://doi.org/10.1080/15298668491400197
- D. M. Ruthven, Principles of Adsorption and Adsorption Processes, p. 433, Wiley, NY, USA (1984).