DOI QR코드

DOI QR Code

A Customized Cleaning Agent for the Maintenance of Electric Fume Collector Used for the Purification of Effluent Gas from the Textile Industry

섬유산업 배기가스 정화용 Electric Fume Collector 설비의 유지보수를 위한 맞춤형 세정제

  • Received : 2017.12.16
  • Accepted : 2018.02.01
  • Published : 2018.04.10

Abstract

A customized cleaning agent was investigated for improving the performance decreased by the pollution of collecting plates in an electric fume collector (EFC) which was developed and applied for the purification of effluent gas including oil mist from the textile industry. The pollutants on the surface of collecting plates were blackened by the condensation of oil mist for a long time and difficult to remove by general cleaning agents. The composition of an optimized cleaning agent consisted of alkali, alcohol, glycol and non-ionic surfactant sources was determined by considering the pollutant properties and effect on the damage of the basic metal of collecting plate and so on. The developed cleaning agent solution diluted by 9.1% was applied to the field test, and also the pollutants strongly adhered on collecting plate surfaces were successfully removed by a simple spraying method. The effluent gas purification efficiency of EFC increased significantly by cleaning of collecting plates.

섬유산업에서 배출되는 오일미스트를 함유한 배기가스를 처리하기 위해 개발되어 실제 현장에 적용되고 있는 electric fume collector (EFC) 설비의 집진판 오염에 의한 성능저하를 개선하기 위한 맞춤형 세정제를 검토하였다. 집진판 표면의 오염물질은 오일미스트가 장기간 축적되면서 심하게 탄화되어 일반 세정제로는 쉽게 제거하기 어려운 상태였다. 오염물질의 특성과 집진판 모재의 손상 등을 고려하여, 알칼리, 알코올, 글리콜 및 비이온계 계면활성제로 구성된 최적의 세정제 성분 조성을 결정하였다. 현장실증실험에는 개발된 세정제 원액을 9.1%로 희석한 용액을 이용하였으며, 단순한 분무방식으로 심하게 점착된 집진판 표면의 오염물질을 성공적으로 제거할 수 있었다. 집진판의 세척에 의하여 EFC 설비의 배기가스 정화성능 개선효과도 크게 향상되었다.

Keywords

References

  1. A. Muezzinoglu, Air pollutant emission potentials of cotton textile manufacturing industry, J. Clean. Prod., 6, 339-347 (1998). https://doi.org/10.1016/S0959-6526(98)00013-4
  2. A. Hasanbeigi and L. Price, A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry, J. Clean. Prod., 95, 30-44 (2015). https://doi.org/10.1016/j.jclepro.2015.02.079
  3. E. Alay, K. Duran, and A. Korlu, A sample work on green manufacturing in textile industry, Sustain. Chem. Pharm., 3, 39-46 (2016). https://doi.org/10.1016/j.scp.2016.03.001
  4. C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, A critical review on textile wastewater treatments: Possible approaches, J. Environ. Manage., 182, 351-366 (2016). https://doi.org/10.1016/j.jenvman.2016.07.090
  5. L. Chen, L. Wang, X. Wu, and X. Ding, A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry, J. Clean. Prod., 143, 1137-1143 (2017). https://doi.org/10.1016/j.jclepro.2016.12.006
  6. E. Hassanzadeh, M. Farhadian, A. Razmjou, and N. Askari, An efficient wastewater treatment approach for a real woolen textile industry using a chemical assisted NF membrane process, Environ. Nanotechnol. Monit. Manage., 8, 92-96 (2017). https://doi.org/10.1016/j.enmm.2017.06.001
  7. M. Fatima, R. Farooq, R. W. Lindstrom, and M. Saeed, A review on biocatalytic decomposition of azo dyes and electrons recovery, J. Mol. Liq., 246, 275-281 (2017). https://doi.org/10.1016/j.molliq.2017.09.063
  8. C.-J. Park, The study on the regional odor production & method for abatement of odors in Incheon area, J. Korean Soc. Environ. Adm., 11, 37-47 (2005).
  9. K.-H. Kim and S.-Y. Park, A comparative analysis of malodor samples between direct (olfactometry) and indirect (instrumental) methods, Atmos. Environ., 42, 5061-5070 (2008). https://doi.org/10.1016/j.atmosenv.2008.02.017
  10. K.-H. Kim, The need for practical input data for modeling odor nuisance effects due to a municipal solid waste landfill in the surrounding environment, Environ. Int., 87, 116-117 (2016). https://doi.org/10.1016/j.envint.2015.11.004
  11. J.-I. Paeng, S.-J. Cho, and H.-M. Kim, Evaluation of odor characteristics in leather manufacture factories system, J. Korean Soc. Environ. Adm., 11, 241-248 (2005).
  12. J.-I. Paeng, S.-J. Cho, and H.-M. Kim, Ordor characteristics of dyeing and finishing textile factories, J. Korean Soc. Environ. Adm., 14, 45-54 (2008).
  13. C.-S. Park, Y.-J. Yu, H.-Y. Chae, J.-H. Yu, I.-H. Lee, J.-H. Ha, and M.-G. Kim, Identification of individual odor characteristic and odor-active compounds from a dye company, Korean J. Odor Res. Eng., 8, 144-150 (2009).
  14. Y. S. Hwang, H. J. Park, G. H. Chung, D. H. Kim, and B.-K. Na, Full-scale EFC study on oil recovery and reuse from discharge gas of tenter facility in textile industry, Clean Technol., 17, 259-265 (2011).
  15. M. Brancher, K. D. Griffiths, D. Franco, and H. M. Lisboa, A review of odour impact criteria in selected countries around the world, Chemosphere, 168, 1531-1570 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.160
  16. A. C. Kogawa, B. G. Cernic, L. G. D. do Couto, and H. R. N. Salgado, Synthetic detergents: 100 years of history, Saudi Pharm. J., 25, 934-938 (2017). https://doi.org/10.1016/j.jsps.2017.02.006
  17. J. H. Bae and J.-S. Kim, Environmentally friendly aqueous/semi-aqueous cleaning technology, Clean Technol., 3, 36-46 (1997).
  18. S.-W. Han, H.-Y. Lee, J.-H. Bae, J.-H. Ryu, B.-D. Park, and S.-D. Jeon, Analysis of monitoring and recycling technologies of cleaning solution and rinse water in the aqueous cleaning system, Clean Technol., 7, 225-242 (2001).
  19. H. Kim and J. H. Bae, Evaluation of cleaning ability of aqueous cleaning agents according to their additives, Clean Technol., 12, 1-9 (2006).
  20. X. Shi, G. Tal, N. P. Hankins, and V. Gitis, Fouling and cleaning of ultrafiltration membranes: A review, J. Water Process Eng., 1, 121-138 (2014). https://doi.org/10.1016/j.jwpe.2014.04.003