• Title/Summary/Keyword: size effect model

Search Result 2,032, Processing Time 0.033 seconds

Effects of Latin hypercube sampling on surrogate modeling and optimization

  • Afzal, Arshad;Kim, Kwang-Yong;Seo, Jae-won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.240-253
    • /
    • 2017
  • Latin hypercube sampling is widely used design-of-experiment technique to select design points for simulation which are then used to construct a surrogate model. The exploration/exploitation properties of surrogate models depend on the size and distribution of design points in the chosen design space. The present study aimed at evaluating the performance characteristics of various surrogate models depending on the Latin hypercube sampling (LHS) procedure (sample size and spatial distribution) for a diverse set of optimization problems. The analysis was carried out for two types of problems: (1) thermal-fluid design problems (optimizations of convergent-divergent micromixer coupled with pulsatile flow and boot-shaped ribs), and (2) analytical test functions (six-hump camel back, Branin-Hoo, Hartman 3, and Hartman 6 functions). The three surrogate models, namely, response surface approximation, Kriging, and radial basis neural networks were tested. The important findings are illustrated using Box-plots. The surrogate models were analyzed in terms of global exploration (accuracy over the domain space) and local exploitation (ease of finding the global optimum point). Radial basis neural networks showed the best overall performance in global exploration characteristics as well as tendency to find the approximate optimal solution for the majority of tested problems. To build a surrogate model, it is recommended to use an initial sample size equal to 15 times the number of design variables. The study will provide useful guidelines on the effect of initial sample size and distribution on surrogate construction and subsequent optimization using LHS sampling plan.

Accuracy Evaluation of Dispersion-Correction Finite Difference Model for Tsunami Propagation (지진해일 전파 분산보정 유한차분모형의 정밀도 평가)

  • 윤성범;임채호;조용식;최철순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.116-127
    • /
    • 2002
  • Most of finite difference numerical models for the simulation of tsunami propagation developed so for are based on the shallow-water equations which are frequently solved by the leap-frog scheme. If the grid size is properly selected, this numerical scheme gives a correct dispersion effect fur constant water depth. However, if the water depth changes, the dispersion effect of tsunamis can not be accurately considered at every grid point in the whole computational domain. In this study we improved the existing two-dimensional dispersion-correction finite difference numerical scheme. The present scheme satisfies the local dispersion relationships of tsunamis propagating over a slowly varying topography while using uniform grid size and time step. To verify the applicability of the improved numerical model, a tsunami due to 1983 East Sea central earthquake is simulated for Korean harbors with the tide gage records such as Sokcho, Mukho, Pohang and Ulsan in the East Sea. Numerical results of the 1983 tsunami are compared with the measured data and the accuracy of the present numerical model is evaluated.

Effect of the size of the bony access window and the collagen barrier over the window in sinus floor elevation: a preclinical investigation in a rabbit sinus model

  • Sim, Jeong-Eun;Kim, Sangyup;Hong, Ji-Youn;Shin, Seung-Il;Chung, Jong-Hyuk;Lim, Hyun-Chang
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.325-337
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the effect of (1) the size of the bony access window and (2) collagen membrane coverage over the window in sinus floor elevation in a rabbit sinus model. Methods: Small bony access windows (SW; ø 2.8 mm) were made in 6 rabbits and large windows (LW; ø 6 mm) in 6 other rabbits. Both sinuses in each rabbit were allocated to groups with or without coverage of a collagen membrane (CM) on the window, resulting in 4 groups: SW, LW, SW+CM, and LW+CM. After 4 weeks of healing, micro-computed tomographic, histologic, and histomorphometric analyses were performed. Results: Bony healing in the window area was incomplete in all groups, but most bone graft particles were well confined in the augmented cavity. Histologically, the pattern of new bone formation was similar in all groups. Histomorphometrically, the percentage of newly formed bone was greater in the groups with CM than in the groups without CM, and in the groups with SW than in the groups with LW (12.92%±6.40% in the SW+CM group, 4.21%±7.73% in the SW group, 10.45%±4.81% in the LW+CM group, 11.77%±3.83% in the LW group). The above differences were not statistically significant (P>0.05). Conclusions: The combination of a small bony access window and the use of a collagen membrane over the window favored new bone formation compared to other groups, but this result should be further investigated due to the limitations of the present animal model.

Colour Appearance Modelling based on Background Lightness and Colour Stimulus Size in Displays (디스플레이에서 배경의 밝기와 색채 자극의 크기에 따른 컬러 어피어런스 모델링)

  • Hong, Ji Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2018
  • This study was conducted to reproduce digital colour based on the lightness of the background and size of the colour stimulus so that colour can be similarly perceived under different conditions. With the evolution of display technologies, display devices of various sizes can now reproduce more accurate colour and enhanced images, thus affecting the overall quality of display images. This study reproduced digital colour by considering the visual characteristics of the digital media environment. To accomplish this, we developed a colour appearance model which distinguishes the properties of foveal and peripheral vision. The proposed model is based on existing research on the lightness of the background and size of the colour stimulus. Based on experimental results, an analysis of variance was performed in order to develop the colour appearance model. The algorithm and modelling were verified based on the proposed model. In addition, to apply this model to display technologies, a practical colour control system and a method for handling complex input images were developed. Through this research, colour conversion errors which might occur when the input image is converted to fit a specific display size are resolved from the perspective of the human visual system. As a result, more accurate colour can be displayed and enhanced images can be reproduced.

Effect of nonionic surfactants on the electrorheology of emulsions

  • Ha, Jong-Wook;Moon, Jung-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.241-246
    • /
    • 1999
  • In this study, we consider the effect of nonionic surfactants on the rheological responses of emulsion systems under the action of a uniform do electric field. The model emulsions consist of a less conducting dispersed phase and a more conducting continuous phase. When the shear flow is weak, the positive viscosity effect is produced due to the formation of chain-like morphology. The nonionic surfactants used here generate two distinctively different effects. Specifically, first, the steric hindrance induced by the surfactant molecules renders the structure unstable, and thereby reduces the degree of positive viscosity effect. Secondly, the presence of surfactant molecules also prevents the rotation of the dispersed droplets by anchoring across the interface or by decreasing the size of dispersed phase. The second effect suppresses the negative viscosity effect.

  • PDF

The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Moradizadeh, Masih
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.373-381
    • /
    • 2018
  • Hollow center cracked disc (HCCD) in Brazilian test was modelled numerically to study the crack propagation in the pre-cracked disc. The pre-existing edge cracks in the disc models were considered to investigate the crack propagation and coalescence paths within the modelled samples. The effect of particle size on the hollow center cracked disc (HCCD) in Brazilian test were considered too. The results shows that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

Effect of Talc on Gravure Printability(I) -Effect of talc on gravure printability of matt and grade coated papers- (탈크가 그라비어 인쇄적성에 미치는 영향 제1보 - 탈크가 무광택 및 광택 도공지 그라비어 인쇄적성에 미치는 영향 -)

  • Cheong, Hee-Seok;Kim, Chang-Keun;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Talc as a coating pigment has been developed in order to replace GCC and clay for matte grade and has received much attention due to various advantages including good gravure printability. In order to elucidate the effects of talc on gravure printability, model papers were produced with three kinds of coating talc whose particle size and brightness are different. Physical properties related to surface and structure and the gravure printability of the sample were tested. Coating color with talc showed lower viscosity than that with clay. For both matte and art grades, talc tended to give lower gloss than day. The smaller the particle size of talc, the better properties in the coating color viscosity and water retention. When the particle size of talc was small enough, the surface roughness of the coated paper produced with talc was similar to that with clay while larger talcs produced rougher surface than clay. On top of that, application of talc improved compressibility and gravure printability of coated paper.

Effect of Strain Rate Sensitivity and Mesh Size on Constitutive Equation Fitting Using Finite Element Analysis (유한요소해석을 사용한 구성 방정식 피팅 시 변형률 속도 민감도 및 요소 크기의 영향)

  • Gu, G.H.;Kim, Y.;Seo, M.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.200-206
    • /
    • 2022
  • The finite element analysis is one of the representative methods for predicting the materials behavior for experiments that are difficult to perform empirically. Constitutive equations are essential for reducing computation time and sharing data because they enable finite element analysis simulations through simple formulae. However, it is difficult to derive accurate flow curves for all materials as most constitutive equations are not formulated based on their physical meaning. Also, even if the constitutive equation is a good representation of the flow curve to the experimental results, some fundamental issues remain unresolved, such as the effect of mesh size on the calculation results. In this study, a new constitutive equation was proposed to predict various materials by modifying the combined Swift-Voce model, and the calculation results with various mesh sizes were compared to better simulate the experimental results.

Predicting claim size in the auto insurance with relative error: a panel data approach (상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구)

  • Park, Heungsun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.697-710
    • /
    • 2021
  • Relative error prediction is preferred over ordinary prediction methods when relative/percentile errors are regarded as important, especially in econometrics, software engineering and government official statistics. The relative error prediction techniques have been developed in linear/nonlinear regression, nonparametric regression using kernel regression smoother, and stationary time series models. However, random effect models have not been used in relative error prediction. The purpose of this article is to extend relative error prediction to some of generalized linear mixed model (GLMM) with panel data, which is the random effect models based on gamma, lognormal, or inverse gaussian distribution. For better understanding, the real auto insurance data is used to predict the claim size, and the best predictor and the best relative error predictor are comparatively illustrated.

Application of the Polymer Behavior Model to 3D Structure Fabrication (3차원 미세 구조물 제작을 위한 폴리머 유동 모델의 적용)

  • Kim, Jong-Young;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.123-130
    • /
    • 2009
  • This study presents the application of a polymer behavior model that considers fluid mechanics and heat transfer effects in a deposition system. The analysis of the polymer fluid properties is very important in the fabrication of precise microstructures. This fluid behavior model involves the calculation of velocity distribution and mass flow rates that include the effect of heat loss in the needle. The effectiveness of the proposed method was demonstrated by comparing estimated mass fluid rates with experimental values. The mass fluid rates under various process conditions, such as pressure, temperature, and needle size, reflected the actual deposition state relatively well, and the assumption that molten polycaprolactone(PCL) is a non-Newtonian fluid was reasonable. The successful fabrication of three-dimensional microstructures demonstrated that the model is valid for predicting the polymer behavior characteristics in the microstructure fabrication process. The results of this study can be used to investigate the effect of various parameters on fabricated structures before turning to experimental approaches.