• Title/Summary/Keyword: size effect model

Search Result 2,032, Processing Time 0.03 seconds

The effect of grain shape on grain growth behavior of oxide system during liquid phase sintering (산화물계의 액상소결에서 입자 형상이 입자성장 거동에 미치는 영향)

  • 조동희;박상엽
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.127-131
    • /
    • 2001
  • The effect of grain shape on the grain growth behavior of oxide system was investigated as afunction of liquid content during liquid phase sintering. As a model system, the solid grains of $Al_{2}O_{3}$ and MgO were selected during liquid phase sintering, i.e. faceted shape of $Al_{2}O_{3}$ in $CaAl_{2}Si_{2}O_{8}$ liquid phase and spherical shape of MgO in $CaMgSiO_{4}$ liquid phase. The average grain size of MgO with spherical shape was decreased with increasing the liquid phase content, whereas that of $Al_{2}O_{3}$ with faceted shape was independent of liquid phase content. In the case of $Al_{2}O_{3}$ grains with faceted shape, which interfaces are expected to be atomically flat, are likely to grow by the interfacial reaction controled process. Whereas, in the case of MgO grains with spherical shape, which interface are expected to be atomically rough, are likely to grow by the diffusion controlled process.

  • PDF

Effect of Applied Voltage Bias on Electrochemical Migration in Eutectic SnPb Solder Alloy

  • Lee, Shin-Bok;Jung, Ja-Young;Yoo, Young-Ran;Park, Young-Bae;Kim, Young-Sik;Joo, Young-Chang
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.282-285
    • /
    • 2007
  • Smaller size and higher integration of electronic systems make narrower interconnect pitch not only in chip-level but also in package-level. Moreover electronic systems are required to operate in harsher conditions, that is, higher current / voltage, elevated temperature / humidity, and complex chemical contaminants. Under these severe circumstances, electronic components respond to applied voltages by electrochemically ionization of metals and conducting filament forms between anode and cathode across a nonmetallic medium. This phenomenon is called as the electrochemical migration. Many kinds of metal (Cu, Ag, SnPb, Sn etc) using in electronic packages are failed by ECM. Eutectic SnPb which is used in various electronic packaging structures, that is, printed circuit boards, plastic-encapsulated packages, organic display panels, and tape chip carriers, chip-on-films etc. And the material for soldering (eutectic SnPb) using in electronic package easily makes insulation failure by ECM. In real PCB system, not only metals but also many chemical species are included. And these chemical species act as resources of contamination. Model test systems were developed to characterize the migration phenomena without contamination effect. The serpentine-shape pattern was developed for analyzing relationship of applied voltage bias and failure lifetime by the temperature / humidity biased(THB) test.

Dynamic Characteristics and Piezoelectric Effect of Energy Harvesting Block Structures with Different Shapes (다양한 형상 변화에 따른 에너지 수확용 블록 구조의 동적 특성 및 압전 효과)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.379-387
    • /
    • 2012
  • This study investigates free vibration characteristics of new energy harvesting multi-layer block structures with different geometrical shapes using solid and shell finite elements and evaluate their piezoelectric effect on experiments. The two and three-dimensional finite element (FE) delamination models for block structures described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the entire vibration mode shape. The FE model using ABAQUS is used for studying free vibrations of multi-layer block structures for various tip mass and PZT. In particular, new results reported in this paper are focused on the significant effects of the global and local vibration modes for various parameters, such as size of block shape, existence of tip mass and hole, and location of tip mass and PZT. In addition, we evaluate the power generation capacity of developed energy block structures through a laboratory-scale experiment.

Electronic Shielding Effectiveness of the Structure with Long-shape Aperture (Long-shape aperture를 갖는 구조물의 Electronic Shielding Effectiveness 연구)

  • Heo, Yu;Kim, Min-Ho;Kim, In-Seok;Baek, Young-Nam
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.810-813
    • /
    • 2003
  • Wide spread using of mobile and handy electronic apparatus is giving rise to a question on the harmfulness of health and causing troubles when electical and electronic equipments are in use. This paper reports on the experimental results obtained by using a pliable and structured specimen that has a long shape aperture, made of stainless steel fibers. Based on the TEM mode transfer structure that was designed and manufactured through HFSS, we measured electromagnetic shielding effectives, where the network analyzer was applied. We could draw a conclusion from this research that the metal fabric showed a good electromagnetic shielding effect, mainly by means of the good reflex loss at the fiber surface. Even though the material itself possesses a good absorption loss. the specimen revealed that structural factors. e.g.. the shape of the aperture. the size of the aperture, etc., can have a more influence on the shielding effect than the components of material have. A special notice is required for modeling and analyzing the electromagnetic characteristics of metal fabrics, because there exists a strong possibility that multiple reflection can happen on the surface of metal fibers. which can presume a model of fiber bundle and fabric structure.

  • PDF

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

A Study on the Lateral Earthpressure at Behind Structure for Backfill by Sand (구조물 배면에 사질토 되메움시 유발되는 수평토압에 관한연구)

  • Lee, Sang-Duk;Kang, Se-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • In this study, the reinforcing effect of geogrids in the narrow backfill by sand was experimentally studied. In the model tests, the size of space and the slope of the cut off slope were varied out. The resultant and the distribution of lateral earth pressure were measured. Width of backfill space varied 10 cm, 20 cm, 30 cm at the lower wall level and angle of the cut off slope varied $90^{\circ}$, $75^{\circ}$, $60^{\circ}$. Geogrids were installed in the backfill. Measured results showed that the distribution of the lateral earth pressure due to the narrow backfill developed in a arching shape. And the earth pressure was reduced due to the reinforcement of the backfill by geogrid. geogrid helps reduction of lateral earth pressure.

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.

A Study on the Effect of Using an Electronic Board in a Mathematics Classroom (수학수업에서 저비용으로 구성된 전자칠판의 활용효과에 대한 연구)

  • Park, Woong-Seo;ChoiKoh, Sang-Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.1
    • /
    • pp.1-29
    • /
    • 2011
  • In this study, we designed and constructed a very low-cost electronic board in order to test its efficiency in the classroom as well as provide an easy-to-follow model for front-line teachers to re-create and utilize for their own academic use. For our sample size, we tested 143 high school first grade students. In mathematical achievement, we found meaningful improvement in both genders but we did not find any meaningful gender differences. In the mathematical disposition test, we also found some meaningful changes in curiosity and flexibility in both genders but did not find any meaningful gender differences either. Based on this study, we propose using our low-cost electronic board system, which is easy to make and effective in mathematical achievement, instead of recently promoted high-cost electronic board systems.

  • PDF

An Analysis of the Effects of Unions on Wages for Female Workers (우리나라 노동조합이 여성근로자의 임금에 미치는 영향)

  • Shin, Woori;Song, Heonjae
    • Journal of Labour Economics
    • /
    • v.39 no.3
    • /
    • pp.99-124
    • /
    • 2016
  • This study analyzed the effects of labor unions on the wages of Korean female workers using 'Korean Labor and Income Panel Study.' In the estimation we considered the self-selection bias due to the women's labor force participation decision and a plausible non-response bias from not answering the question about the company size in terms of number of employees. By fixed effect estimation we found that labor unions in Korea do not increase the wages of both the female union workers and non-union workers who work at a company in which a union is organized comparing to female workers who work at company without a union. This results indicates that female workers who work in the company with labor union tend to have unobserved characteristics that are positively correlated with both wages and the probability to enter the company with labor union. We also came to the conclusion that there is no free-rider effects of non-union workers.

  • PDF

A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection (차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구)

  • Lee Jin-Wook;Min Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.