• Title/Summary/Keyword: size effect model

Search Result 2,032, Processing Time 0.035 seconds

The Effect of Micro-Pore Configuration on the Flow and Thermal Fields of Supercritical CO2

  • Choi, Hang-Seok;Park, Hoon-Chae;Choi, Yeon-Seok
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • Currently, the technology of $CO_2$ capture and storage (CCS) has become the main issue for climate change and global warming. Among CCS technologies, the prediction of $CO_2$ behavior underground is very critical for $CO_2$ storage design, especially for its safety. Hence, the purpose of this paper is to model and simulate $CO_2$ flow and its heat transfer characteristics in a storage site, for more accurate evaluation of the safety for $CO_2$ storage process. In the present study, as part of the storage design, a micro pore-scale model was developed to mimic real porous structure, and computational fluid dynamics was applied to calculate the $CO_2$ flow and thermal fields in the micro pore-scale porous structure. Three different configurations of 3-dimensional (3D) micro-pore structures were developed, and compared. In particular, the technique of assigning random pore size in 3D porous media was considered. For the computation, physical conditions such as temperature and pressure were set up, equivalent to the underground condition at which the $CO_2$ fluid was injected. From the results, the characteristics of the flow and thermal fields of $CO_2$ were scrutinized, and the influence of the configuration of the micro-pore structure on the flow and scalar transport was investigated.

Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements (응집영역요소를 이용한 균열진전 모사)

  • Ha, Sang-Yul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • In this study a cohesive zone model was used to simulate the delamination phenomena which occurs by a successive crack initiation and propagation in composite laminates. The cohesive zone model was incorporated to the classical finite element method via cohesive element formulation and then implemented into the user-subroutine UEL of a commercial finite element program Abaqus. To validate the formulation and implementation of the cohesive element the finite element results were compared with the experimental data of double cantilever beam and end notched flexure tests. The numerical results well agree with the experimental load-displacement curves. Also the effect of the elastic stiffness and the size of the cohesive element on the global load-displacement curves were studied numerically. To minimize the mesh-dependency of the crack propagation path and eliminate the zig-zag patterns in the load-displacement curve, cohesive elements should be refined at the crack-tip.

A Study on the Reverberation Characteristics of Coupled Spaces (음향적으로 결합된 공간의 잔향특성변화에 관한 연구)

  • Jeong, Dae-Up;Kim, Ji-Young;Choi, Young-Ji
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.53-63
    • /
    • 2008
  • In this study, the reverberation characteristics of coupled spaces were investigated using a scale model. Two rooms were connected through an acoustically transparent opening known as an aperture. The acoustic characteristics of the coupled room by varying three parameters, the aperture opening size, the absorption ratio between the two rooms and the locations of the secondary room, were measured and analysed. The results indicated that a reverberant secondary room, produced large variations of the acoustics in the main room and an absorptive secondary room was effective to provide systematic control of the acoustics in the main room. The reverberant secondary room should be located at the rear of the stage and the aperture opening ratio over 6.25% produced large variations of the acoustics in the main room. However, the aperture opening ratio over 25% had no effect on variations of the acoustics in the main room. The absorptive secondary room should be located at the rear of the audience areas and the aperture opening ratio over 3.13% produced large variations of the acoustics in the main room.

  • PDF

Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant (SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구)

  • Jang, Jinwu;Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, the rheological properties of nitromethane gel propellants on nano/micron sized gelling agent are investigated. Silicon dioxide is used as the gellant with 5 wt%, 6.5 wt% and 8 wt% concentration, respectively, where the measurements are conducted under steady-state shear flow conditions using a rotational rheometer. The nitromethane/silicon dioxide gel showed non-Newtonian flow behavior for the entire experimental shear rate ranges. The gel fuels with nano-sized gellant had a slightly higher viscosity than the gel fuels with micron-sized one for low shear rate range. Additionally, it was found that Herschel-Bulkley model can hardly describe the rheological behavior of nitromethane gel propellant, but the NM model(by Teipel and Forter-Barth) is better suited to explain the rheological behavior of nitromethane gel propellant.

  • PDF

Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study

  • Choi, Chunggab;Oh, Seung-Hun;Noh, Jeong-Eun;Jeong, Yong-Woo;Kim, Soonhag;Ko, Jung Jae;Kim, Ok-Joon;Song, Jihwan
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2016
  • Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with $1{\times}10^6$ IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba-$1^+$ cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.

Finite Element Anmllysis of Adiabatic Shear Band (단열 전단 밴드의 유한요소 해석)

  • 유요한;전기영;정동택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1519-1529
    • /
    • 1992
  • A stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element code. The material model for specimen includes effects of thermal softening, strain hardening and strain rate hardening. Various mesh sizes are tested to check whether they are small enough to model highly localized discontinuous phenomena reasonably well. It is shown that the number of adiabatic shear band depends on impact velocity and it is also shown that the initiation and growth of adiabatic shear band inversely depends on prescribed velocity at the top of specimen.

Measurement of Organic Solvent from Painting Work Inside the Steel Box Girder of Bridge (교량 스틸박스거더 도장공사의 유기용제 측정 실험)

  • Lee, Jung-Woo;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.134-142
    • /
    • 2005
  • This study is to find out how organic solvent will be propagated from painting inside the steel box girder of bridge. $2.9m{\times}3.0m$ of inside size of steel box girder is not suitable for painters to do his work comfortably and hygienically. Substance density(ppm)inside the space of the box unsatisfactory hygienical condition. Most of organic solvent(mainly toluene) came down to 0.5m in two minutes and 53sec. But personal protection for painter should be properly kept against flying this heavy organic solvent. longitudinally 27.1m in length is a cell unit of the whole length of bridge. Model XP-3l6A made in Japan is a main instrumentation adjusted to sense organic solvent especially toluene which can be measured up to 10,000ppm. Scenario analysis by computer program, safer release 2.0 has been performed first to estimate how the organic solvent will be propagated. And then actual test was done as a model. This has been measured for approximately five(5) minutes, with 30 sec interval. Actual measurement results showed much higher $10{\sim}20%$ than result analyzed by the computer program, meaning that this painting work can give worse effect to the worker who is painting inside the box girder of the bridge. The first meas urement level over the floor set up at 30cm height from the floor, because organic solvent was estimated to stay at the level. and then, they were measured at 1.0m, 1.5m level respectively, more.

Hypothermia Improves Outcomes of Cardiopulmonary Resuscitation After Cardiac Arrest In a Rat Model of Myocardial Infarction (심근경색에 의한 심정지 후 치료적 저체온증으로 호전된 쥐의 심폐소생술 모델)

  • Roh, Sang-Gyun;Kim, Jee-Hee;Moon, Tae-Young;Park, Jeong-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.170-173
    • /
    • 2011
  • Therapeutic hypothermia(TH) improves neurological outcomes and reduces mortality among survivors of out-of-hospital cardiac arrest. Animal and human studies have shown that TH results in improved salvage of the myocardium, reduced infarct size, reduced left ventricular remodeling and better long-term left ventricular function in settings of regional myocardial ischemia. This study is to investigate the effect of TH on post-resuscitation myocardial dysfunction and survival time after cardiac arrest and resuscitation in a rat model of myocardial infarction (MI). Thoracotomies were performed in 10 Male Sprague-Dawley rats weighing 450-550 g. MI was induced by ligation of the left anterior descending coronary artery (LAD). Ninety min after LAD ligation, ventricular fibrillation induction and subsequent cardiopulmonary resuscitation was performed before defibrillation attempts. Animals were randomized to two groups: a) Acute MI-Normothermia b) Acute MI-Hypothermia ($32^{\circ}C$ for 4 h). Myocardial functions, including cardiac output, left ventricular ejection fraction, and myocardial performance index were measured echocardiographically together with duration of survival. Ejection fraction, cardiac output and myocardial performance index were $54.74{\pm}9.16$, $89.00{\pm}8.89$, $1.30{\pm}0.09$ respectively and significantly better in the TH group than those of the normothermic group at the first 4 h after resuscitation($32.20{\pm}1.85$,$41.60{\pm}8.62$,$1.77{\pm}0.19$)(p=0.00). The survival time of the hypothermic group ($31.8{\pm}14.8$ h) was greater than that of the normothermic group($12.3{\pm}6.5$ h, p<0.05). This study suggested that TH attenuated post resuscitation myocardial dysfunction in acute MI and would be a potential strategy in post resuscitation care.

  • PDF

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

6-sialyllactose ameliorates dihydrotestosterone-induced benign prostatic hyperplasia through suppressing VEGF-mediated angiogenesis

  • Kim, Eun-Yeong;Jin, Bo-Ram;Chung, Tae-Wook;Bae, Sung-Jin;Park, Hyerin;Ryu, Dongryeol;Jin, Ling;An, Hyo-Jin;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.560-565
    • /
    • 2019
  • Benign prostatic hyperplasia (BPH), a common disease in elderly males, is accompanied by non-malignant growth of prostate tissues, subsequently causing hypoxia and angiogenesis. Although VEGF-related angiogenesis is one of the therapeutic targets of prostate cancer, there is no previous study targeting angiogenesis for treatment of BPH. Dihydrotestosterone (DHT)-induced expressions of vascular endothelial growth factor (VEGF) in prostate epithelial RWPE-1 cells and human umbilical vascular endothelial cells (HUVECs). Conditioned media (CM) from DHT-treated RWPE-1 cells were transferred to HUVECs. Then, 6SL inhibited proliferation, VEGFR-2 activation, and tube formation of HUVECs transferred with CM from DHT-treated RWPE-1 cells. In the rat BPH model, 6SL reduced prostate weight, size, and thickness of the prostate tissue. Formation of vessels in prostatic tissues were also reduced with 6SL treatment. We found that 6SL has an ameliorative effect on in vitro and in vivo the BPH model via inhibition of VEGFR-2 activation and subsequent angiogenesis. These results suggest that 6SL might be a candidate for development of novel BPH drugs.