DOI QR코드

DOI QR Code

Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study

  • Choi, Chunggab (Department of Biomedical Science, CHA University) ;
  • Oh, Seung-Hun (Department of Neurology, CHA Bundang Medical Center, CHA University) ;
  • Noh, Jeong-Eun (Department of Biomedical Science, CHA University) ;
  • Jeong, Yong-Woo (Department of Biomedical Science, CHA University) ;
  • Kim, Soonhag (Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University) ;
  • Ko, Jung Jae (Department of Biomedical Science, CHA University) ;
  • Kim, Ok-Joon (Department of Neurology, CHA Bundang Medical Center, CHA University) ;
  • Song, Jihwan (Department of Biomedical Science, CHA University)
  • Received : 2015.11.24
  • Accepted : 2015.12.23
  • Published : 2016.04.30

Abstract

Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with $1{\times}10^6$ IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba-$1^+$ cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.

Keywords

References

  1. Aggarwal, S., and Pittenger, M.F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815-1822. https://doi.org/10.1182/blood-2004-04-1559
  2. Arumugam, T.V., Granger, D.N., and Mattson, M.P. (2005). Stroke and T-cells. Neuromol. Med. 7, 229-242. https://doi.org/10.1385/NMM:7:3:229
  3. Arumugam, T.V., Tang, S.C., Lathia, J.D., Cheng, A., Mughal, M.R., Chigurupati, S., Magnus, T., Chan, S.L., Jo, D.G., Ouyang, X., et al. (2007). Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc. Natl. Acad. Sci. USA 104, 14104-14109. https://doi.org/10.1073/pnas.0700506104
  4. Augello, A., Tasso, R., Negrini, S.M., Cancedda, R., and Pennesi, G. (2007). Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis. Rheum. 56, 1175-1186. https://doi.org/10.1002/art.22511
  5. Bang, O.Y., Lee, J.S., Lee, P.H., and Lee, G. (2005). Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 57, 874-882. https://doi.org/10.1002/ana.20501
  6. Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M.D., and Kaveri, S.V. (2007). Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat. Clin. Pract. Rheumatol. 3, 262-272. https://doi.org/10.1038/ncprheum0481
  7. Bernardo, M.E., and Fibbe, W.E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392-402. https://doi.org/10.1016/j.stem.2013.09.006
  8. Chang, D.J., Lee, N., Park, I.H., Choi, C., Jeon, I., Kwon, J., Oh, S.H., Shin, D.A., Do, J.T., Lee, D.R., et al. (2013). Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 22, 1427-1440. https://doi.org/10.3727/096368912X657314
  9. Chen, J., Sanberg, P.R., Li, Y., Wang, L., Lu, M., Willing, A.E., Sanchez-Ramos, J., and Chopp, M. (2001). Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32, 2682-2688. https://doi.org/10.1161/hs1101.098367
  10. Deng, Y.B., Ye, W.B., Hu, Z.Z., Yan, Y., Wang, Y., Takon, B.F., Zhou, G.Q., and Zhou, Y.F. (2010). Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol. Res. 32, 148-156. https://doi.org/10.1179/174313209X414434
  11. Eggenhofer, E., and Hoogduijn, M.J. (2012). Mesenchymal stem cell-educated macrophages. Transplant Res. 1, 12. https://doi.org/10.1186/2047-1440-1-12
  12. Eltzschig, H.K., and Eckle, T. (2011). Ischemia and reperfusion-- from mechanism to translation. Nat. Med. 17, 1391-1401. https://doi.org/10.1038/nm.2507
  13. Honmou, O., Houkin, K., Matsunaga, T., Niitsu, Y., Ishiai, S., Onodera, R., Waxman, S.G., and Kocsis, J.D. (2011). Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134, 1790-1807. https://doi.org/10.1093/brain/awr063
  14. Iadecola, C., and Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796-808. https://doi.org/10.1038/nm.2399
  15. Ikegame, Y., Yamashita, K., Hayashi, S., Mizuno, H., Tawada, M., You, F., Yamada, K., Tanaka, Y., Egashira, Y., Nakashima, S., et al. (2011). Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13, 675-685. https://doi.org/10.3109/14653249.2010.549122
  16. Ishikawa, M., Vowinkel, T., Stokes, K.Y., Arumugam, T.V., Yilmaz, G., Nanda, A., and Granger, D.N. (2005). CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/ reperfusion. Circulation 111, 1690-1696. https://doi.org/10.1161/01.CIR.0000160349.42665.0C
  17. Katchanov, J., Harms, C., Gertz, K., Hauck, L., Waeber, C., Hirt, L., Priller, J., von Harsdorf, R., Bruck, W., Hortnagl, H., et al. (2001). Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J. Neurosci. 21, 5045-5053. https://doi.org/10.1523/JNEUROSCI.21-14-05045.2001
  18. Kim, J.M., Lee, S.T., Chu, K., Jung, K.H., Song, E.C., Kim, S.J., Sinn, D.I., Kim, J.H., Park, D.K., Kang, K.M., et al. (2007). Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res. 1183, 43-50. https://doi.org/10.1016/j.brainres.2007.09.005
  19. Kim, S.M., Moon, S.H., Lee, Y., Kim, G.J., Chung, H.M., and Choi, Y.S. (2013). Alternative xeno-free biomaterials derived from human umbilical cord for the self-renewal ex-vivo expansion of mesenchymal stem cells. Stem Cells Dev. 22, 3025-3038. https://doi.org/10.1089/scd.2013.0067
  20. Komine-Kobayashi, M., Chou, N., Mochizuki, H., Nakao, A., Mizuno, Y., and Urabe, T. (2004). Dual role of Fcgamma receptor in transient focal cerebral ischemia in mice. Stroke 35, 958-963. https://doi.org/10.1161/01.STR.0000120321.30916.8E
  21. Lee, R.H., Pulin, A.A., Seo, M.J., Kota, D.J., Ylostalo, J., Larson, B.L., Semprun-Prieto, L., Delafontaine, P,. and Prockop, D.J. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54-63. https://doi.org/10.1016/j.stem.2009.05.003
  22. Lee, J.S., Hong, J.M., Moon, G.J., Lee, P.H., Ahn, Y.H., and Bang, O.Y. (2010). A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28, 1099-1106. https://doi.org/10.1002/stem.430
  23. Liesz, A., Bauer, A., Hoheisel, J.D., and Veltkamp, R. (2014). Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: an experimental microarray study. Neurosci. Lett. 579, 18-23. https://doi.org/10.1016/j.neulet.2014.07.003
  24. Liu, X., Ye, R., Yan, T., Yu, S.P., Wei, L., Xu, G., Fan, X., Jiang, Y., Stetler, R.A., Liu, G., et al. (2014). Cell based therapies for ischemic stroke: from basic science to bedside. Prog. Neurobiol. 115, 92-115. https://doi.org/10.1016/j.pneurobio.2013.11.007
  25. Longa, E.Z., Weinstein, P.R., Carlson, S., and Cummins, R. (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84-91. https://doi.org/10.1161/01.STR.20.1.84
  26. Lu, A., Tang, Y., Ran, R., Clark, J.F., Aronow, B.J., and Sharp, F.R. (2003). Genomics of the peri-infarction cortex after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 23, 786-810. https://doi.org/10.1097/01.WCB.0000062340.80057.06
  27. Nemeth, K., Leelahavanichkul, A., Yuen, P.S., Mayer, B., Parmelee, A., Doi, K., Robey, P.G., Leelahavanichkul, K., Koller, B.H., Brown, J.M., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42-49. https://doi.org/10.1038/nm.1905
  28. Osuga, H., Osuga, S., Wang, F., Fetni, R., Hogan, M.J., Slack, R.S., Hakim, A.M., Ikeda, J.E., and Park, D.S. (2000). Cyclindependent kinases as a therapeutic target for stroke. Proc. Natl. Acad. Sci. USA 97, 10254-10259. https://doi.org/10.1073/pnas.170144197
  29. Ramos-Cejudo, J., Gutierrez-Fernandez, M., Rodriguez-Frutos, B., Exposito Alcaide, M., Sanchez-Cabo, F., Dopazo, A., and Diez- Tejedor, E. (2012). Spatial and temporal gene expression differences in core and peri-infarct areas in experimental stroke: a microarray analysis. PLoS One 7, e52121. https://doi.org/10.1371/journal.pone.0052121
  30. Rashidian, J., Iyirhiaro, G., Aleyasin, H., Rios, M., Vincent, I., Callaghan, S., Bland, R.J., Slack, R.S., During, M.J., and Park, D.S. (2005). Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc. Natl. Acad. Sci. USA 102, 14080-14085. https://doi.org/10.1073/pnas.0500099102
  31. Rashidian, J., Iyirhiaro, G.O., and Park, D.S. (2007). Cell cycle machinery and stroke. Biochim. Biophys. Acta 1772, 484-493. https://doi.org/10.1016/j.bbadis.2006.11.009
  32. Samuelsson, A., Towers, T.L., and Ravetch, J.V. (2001). Antiinflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484-486. https://doi.org/10.1126/science.291.5503.484
  33. Shichita, T., Sugiyama, Y., Ooboshi, H., Sugimori, H., Nakagawa, R., Takada, I., Iwaki, T., Okada, Y., Iida, M., Cua, D.J., et al. (2009). Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946-950. https://doi.org/10.1038/nm.1999
  34. Slevin, M., Krupinski, J., Kumar, P., Gaffney, J., and Kumar, S. (2005). Gene activation and protein expression following ischaemic stroke: strategies towards neuroprotection. J. Cell. Mol. Med. 9, 85-102. https://doi.org/10.1111/j.1582-4934.2005.tb00339.x
  35. Sun, L., Akiyama, K., Zhang, H., Yamaza, T., Hou, Y., Zhao, S., Xu, T., Le, A., and Shi, S. (2009). Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27, 1421-1432. https://doi.org/10.1002/stem.68
  36. Tang, Y., Lu, A., Aronow, B.J., Wagner, K.R., and Sharp, F.R. (2002). Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur. J. Neurosci. 15, 1937-1952. https://doi.org/10.1046/j.1460-9568.2002.02030.x
  37. Vedeler, C., Ulvestad, E., Grundt, I., Conti, G., Nyland, H., Matre, R., and Pleasure, D. (1994). Fc receptor for IgG (FcR) on rat microglia. J. Neuroimmunol. 49, 19-24. https://doi.org/10.1016/0165-5728(94)90176-7
  38. Walczak, P., Zhang, J., Gilad, A.A., Kedziorek, D.A., Ruiz-Cabello, J., Young, R.G., Pittenger, M.F., van Zijl, P.C., Huang, J., and Bulte, J.W. (2008). Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39, 1569-1574. https://doi.org/10.1161/STROKEAHA.107.502047
  39. Wang, F., Corbett, D., Osuga, H., Osuga, S., Ikeda, J.E., Slack, R.S., Hogan, M.J., Hakim, A.M., and Park, D.S. (2002). Inhibition of cyclin-dependent kinases improves CA1 neuronal survival and behavioral performance after global ischemia in the rat. J. Cereb. Blood Flow Metab. 22, 171-182. https://doi.org/10.1097/00004647-200202000-00005
  40. Yilmaz, G., Arumugam, T.V., Stokes, K.Y., and Granger, D.N. (2006). Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113, 2105-2112. https://doi.org/10.1161/CIRCULATIONAHA.105.593046
  41. Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755-1761. https://doi.org/10.1182/blood-2005-04-1496
  42. Zhang, L., Li, Y., Zhang, C., Chopp, M., Gosiewska, A., and Hong, K. (2011). Delayed administration of human umbilical tissuederived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke 42, 1437-1444. https://doi.org/10.1161/STROKEAHA.110.593129

Cited by

  1. Interleukin-1 receptor antagonist-mediated neuroprotection by umbilical cord-derived mesenchymal stromal cells following transplantation into a rodent stroke model vol.50, pp.4, 2018, https://doi.org/10.1038/s12276-018-0041-1
  2. Enhancing the Therapeutic Potential of CCL 2-Overexpressing Mesenchymal Stem Cells in Acute Stroke vol.21, pp.20, 2016, https://doi.org/10.3390/ijms21207795
  3. Extracellular Vesicles Released from Neprilysin Gene-Modified Human Umbilical Cord-Derived Mesenchymal Stem Cell Enhance Therapeutic Effects in an Alzheimer’s Disease Animal Model vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5548630