• Title/Summary/Keyword: size effect model

Search Result 2,032, Processing Time 0.025 seconds

Size-effect of fracture parameters for crack propagation in concrete: a comparative study

  • Kumar, Shailendra;Barai, S.V.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • The size-effect study of various fracture parameters obtained from two parameter fracture model, effective crack model, double-K fracture model and double-G fracture model is presented in the paper. Fictitious crack model (FCM) for three-point bend test geometry for cracked concrete beam of laboratory size range 100-400 mm is developed and the different fracture parameters from size effect model, effective crack model, double-K fracture model and double-G fracture model are evaluated using the input data obtained from FCM. In addition, the fracture parameters of two parameter fracture model are obtained using the mathematical coefficients available in literature. From the study it is concluded that the fracture parameters obtained from various nonlinear fracture models including the double-K and double-G fracture models are influenced by the specimen size. These fracture parameters maintain some definite interrelationship depending upon the specimen size and relative size of initial notch length.

Aspects of size effect on discrete element modeling of normal strength concrete

  • Gyurko, Zoltan;Nemes, Rita
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.521-532
    • /
    • 2021
  • Present paper focuses on the modeling of size effect on the compressive strength of normal concrete with the application of Discrete Element Method (DEM). Test specimens with different size and shape were cast and uniaxial compressive strength test was performed on each sample. Five different concrete mixes were used, all belonging to a different normal strength concrete class (C20/25, C30/37, C35/45, C45/55, and C50/60). The numerical simulations were carried out by using the PFC 5 software, which applies rigid spheres and contacts between them to model the material. DEM modeling of size effect could be advantageous because the development of micro-cracks in the material can be observed and the failure mode can be visualized. The series of experiments were repeated with the model after calibration. The relationship of the parallel bond strength of the contacts and the laboratory compressive strength test was analyzed by aiming to determine a relation between the compressive strength and the bond strength of different sized models. An equation was derived based on Bazant's size effect law to estimate the parallel bond strength of differently sized specimens. The parameters of the equation were optimized based on measurement data using nonlinear least-squares method with SSE (sum of squared errors) objective function. The laboratory test results showed a good agreement with the literature data (compressive strength is decreasing with the increase of the size of the specimen regardless of the shape). The derived estimation models showed strong correlation with the measurement data. The results indicated that the size effect is stronger on concretes with lower strength class due to the higher level of inhomogeneity of the material. It was observed that size effect is more significant on cube specimens than on cylinder samples, which can be caused by the side ratios of the specimens and the size of the purely compressed zone. A limit value for the minimum size of DE model for cubes and cylinder was determined, above which the size effect on compressive strength can be neglected within the investigated size range. The relationship of model size (particle number) and computational time was analyzed and a method to decrease the computational time (number of iterations) of material genesis is proposed.

A novel meso-mechanical model for concrete fracture

  • Ince, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.91-112
    • /
    • 2004
  • Concrete is a composite material and at meso-level, may be assumed to be composed of three phases: aggregate, mortar-matrix and aggregate-matrix interface. It is postulated herein that although non-linear material parameters are generally used to model this composite structure by finite element method, linear elastic fracture mechanics principles can be used for modelling at the meso level, if the properties of all three phases are known. For this reason, a novel meso-mechanical approach for concrete fracture which uses the composite material model with distributed-phase for elastic properties of phases and considers the size effect according to linear elastic fracture mechanics for strength properties of phases is presented in this paper. Consequently, the developed model needs two parameters such as compressive strength and maximum grain size of concrete. The model is applied to three most popular fracture mechanics approaches for concrete namely the two-parameter model, the effective crack model and the size effect model. It is concluded that the developed model well agrees with considered approaches.

Development of the Size Effect Model for More Accurate Cutting Force Prediction (향상된 절삭력 예측을 위한 Size Effect 모델의 개발)

  • 윤원수;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.995-1000
    • /
    • 2000
  • In this paper. a mechanistic model is first constructed to predict three-dimensional cutting forces, and the uncut chip th thickness is calculated by following the movements of the position of the center of a cutter, which varies with the nominal feed, cutter deflection and runout. For general implementation to a real machining, this paper presents the method that determines constant cutting force coefficients, irrespective of the cutting conditions or cutter rotation angles. In addition, this study presents the approach which estimates runout-related parameters. the runout offset and its location angle, using only one measurement of cutting forces. For more accurate cutting force predictions, the size effect has to be considered in the cutting force model. In this paper, two approximate methods are suggested since the strict approach is practically impossible due to a measurement problem. The size effect is individually considered for narrow and wide cuts.

  • PDF

Effect of the Variable Packet Size on LRD Characteristic of the MMPP Traffic Model

  • Lee, Kang-Won;Kwon, Byung-Chun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1B
    • /
    • pp.17-24
    • /
    • 2008
  • The effect of the variable packet size on the LRD characteristic of the MMPP traffic model is investigated. When we generate packet traffic for the performance evaluation of IP packet network, MMPP model can be used to generate packet interarrival time. And a random length of packet size from a certain distribution can be assigned to each packet. However, there is a possibility that the variable packet size might change the LRD characteristic of the original MMPP model. In this study, we investigate this possibility. For this purpose the 'refined traffic' is defined, where packet arrival time is generated according to the MMPP model and a random packet length from a specific distribution is assigned to each generated packet. Hurst parameter of the refined traffic is estimated and compared with the original Hurst parameter, which is the input parameter of the MMPP model. We also investigate the effect of the packet size distribution on the queueing performance of the MMPP traffic model and the relationship between the Hurst parameter and queueing performance.

Prediction of Shear Strength for Large Anchors Considering the Prying Effect and Size Effect

  • Kim, Kangsik;Lee, Kwangsoo;An, Gyeonghee
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.451-460
    • /
    • 2016
  • An anchorage system is necessary in most reinforced concrete structures for connecting attachments. It is very important to predict the strength of the anchor to safely maintain the attachments to the structures. However, according to experimental results, the existing design codes are not appropriate for large anchors because they offer prediction equations only for small size anchors with diameters under 50 mm. In this paper, a new prediction model for breakout shear strength is suggested from experimental results considering the characteristics of large anchors, such as the prying effect and size effect. The proposed equations by regression analysis of the derived model equations based on the prying effect and size effect can reasonably be used to predict the breakout shear strength of not only ordinary small size anchors but also large size anchors.

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

The Effect of Manual Physical Therapy on Neck Disability Index in Myofascial Pain Syndromes: A Systematic Review

  • Kim, Chan-Myeong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.21-28
    • /
    • 2020
  • PURPOSE: The main purpose of this meta-analysis study was to identify the degree-of-effect size and the variables for the effects of manual physical therapy on myofascial pain syndrome. METHODS: This study collected six studies published between 2015.01.01 and 2019.12.31. The analysis result verified nine effect size data. The random-effect model was chosen because of the heterogeneity of the data. RESULTS: First, the full case showed the largest mean effect size of 2.297 (p < .001). Second, the size of the effect based on the fascial distortion model (FDM) intervention showed an effect size of 4.654 (p < .001). Third, the number of participants showed a 15 or less effect size of 2.612 (p > .058). The number of treatments showed a 10 less effect size of 2.844 (p > .129). The publication type showed a thesis effect size of 3.095 (p < .002). CONCLUSION: Manual physical therapy has a great effect on myofascial pain syndrome in the neck and shoulders, and that the effects differ according to the methods of intervention.

A hardening model considering grain size effect for ion-irradiated polycrystals under nanoindentation

  • Liu, Kai;Long, Xiangyun;Li, Bochuan;Xiao, Xiazi;Jiang, Chao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2960-2967
    • /
    • 2021
  • In this work, a new hardening model is proposed for the depth-dependent hardness of ion-irradiated polycrystals with obvious grain size effect. Dominant hardening mechanisms are addressed in the model, including the contribution of dislocations, irradiation-induced defects and grain boundaries. Two versions of the hardening model are compared, including the linear and square superposition models. A succinct parameter calibration method is modified to parametrize the models based on experimentally obtained hardness vs. indentation depth curves. It is noticed that both models can well characterize the experimental data of unirradiated polycrystals; whereas, the square superposition model performs better for ion-irradiated materials, therefore, the square superposition model is recommended. In addition, the new model separates the grain size effect from the dislocation hardening contribution, which makes the physical meaning of fitted parameters more rational when compared with existing hardness analysis models.

Analysis model for the pneumatic solid processing system in non-uniform particle size condition (불균일 입도를 가지는 기류식 고체 처리 시스템을 위한 해석모델)

  • Choi, Donghwan;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.229-231
    • /
    • 2015
  • In pneumatic reactor, hydrodynamic relation between gas and solid is important and particle size has a significant effect on this relation. In this reason, we analyzed drying and calcine process with a corrected model by considering the effect of the particle size distribution(PSD) with different seven particle groups by particle size.

  • PDF