DOI QR코드

DOI QR Code

Size-effect of fracture parameters for crack propagation in concrete: a comparative study

  • Kumar, Shailendra (Department of Civil Engineering, National Institute of Technology) ;
  • Barai, S.V. (Department of Civil Engineering, Indian Institute of Technology)
  • Received : 2009.09.01
  • Accepted : 2011.04.06
  • Published : 2012.01.25

Abstract

The size-effect study of various fracture parameters obtained from two parameter fracture model, effective crack model, double-K fracture model and double-G fracture model is presented in the paper. Fictitious crack model (FCM) for three-point bend test geometry for cracked concrete beam of laboratory size range 100-400 mm is developed and the different fracture parameters from size effect model, effective crack model, double-K fracture model and double-G fracture model are evaluated using the input data obtained from FCM. In addition, the fracture parameters of two parameter fracture model are obtained using the mathematical coefficients available in literature. From the study it is concluded that the fracture parameters obtained from various nonlinear fracture models including the double-K and double-G fracture models are influenced by the specimen size. These fracture parameters maintain some definite interrelationship depending upon the specimen size and relative size of initial notch length.

Keywords

References

  1. Alshoaibi, A.M. (2010), "Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading", Struct. Eng. Mech., 35(3), 283-299. https://doi.org/10.12989/sem.2010.35.3.283
  2. Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7(1), 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  3. Bazant, Z.P. (2002), "Concrete fracture models: testing and practice", Eng. Fract. Mech., 69, 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4
  4. Bazant, Z.P., Gettu, R. and Kazemi, M.T. (1991), "Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curve", Int. J. Rock Mech. Min., 28(1), 43-51. https://doi.org/10.1016/0148-9062(91)93232-U
  5. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(93), 155-177.
  6. Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Determination of fracture properties from size effect tests", J. Struct. Eng. - ASCE, 112(2), 289-307. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(289)
  7. Bazant, Z.P. and Planas, J. (1998), Fracture and size effect in concrete and other quasibrittle materials, Florida CRC Press.
  8. Carpinteri, A. (1989), "Cusp catastrophe interpretation of fracture instability", J. Mech. Phys. Solids, 37(5), 567- 582. https://doi.org/10.1016/0022-5096(89)90029-X
  9. Cusatis, G. and Schauffert, E.A. (2009), "Cohesive crack analysis of size effect", Eng. Fract. Mech., 76, 2163- 2173. https://doi.org/10.1016/j.engfracmech.2009.06.008
  10. Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids, 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  11. Elices, M. and Planas, J. (1996), "Fracture mechanics parameters of concrete an overview", Adv. Cem. Based Mater., 4, 116-127.
  12. Elices, M., Guinea, G.V. and Planas, J. (1992), "Measurement of the fracture energy using three-point bend tests: Part 3- Influence of cutting the P-$\delta$ tail", Mater. Struct., 25, 327-334. https://doi.org/10.1007/BF02472591
  13. Elices, M., Guinea, G.V. and Planas, J. (1997), "On the measurement of concrete fracture energy using threepoint bend tests", Mater. Struct., 30, 375-376. https://doi.org/10.1007/BF02480689
  14. Elices, M., Rocco, C. and Rosello, C. (2009), "Cohesive crack modeling of a simple concrete: experimental and numerical results", Eng. Fract. Mech., 76, 1398-1410. https://doi.org/10.1016/j.engfracmech.2008.04.010
  15. Gasser, T.C. (2007), "Validation of 3D crack propagation in plain concrete. Part II: Computational modeling and predictions of the PCT3D test", Comput. Concrete, 4(1), 67-82. https://doi.org/10.12989/cac.2007.4.1.067
  16. Guinea, G.V., Planas, J. and Elices, M. (1992), "Measurement of the fracture energy using three-point bend tests: Part 1 - Influence of experimental procedures", Mater. Struct., 25,, 212-218. https://doi.org/10.1007/BF02473065
  17. Hanson, J.H. and Ingraffea, A.R. (2003), "Using numerical simulations to compare the fracture toughness values for concrete from the size-effect, two-parameter and fictitious crack models", Eng. Fract. Mech., 70, 1015- 1027. https://doi.org/10.1016/S0013-7944(02)00163-7
  18. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  19. Jenq, Y.S. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. - ASCE, 111(10),
  20. Karihaloo, B.L. and Nallathambi, P. (1989), "An improved effective crack model for the determination of fracture toughness of concrete", Cement Concrete Res., 19, 603-610. https://doi.org/10.1016/0008-8846(89)90012-4
  21. Karihaloo, B.L. and Nallathambi, P. (1990), "Size-effect prediction from effective crack model for plain concrete", Mater. Struct., 23(3), 178-185. https://doi.org/10.1007/BF02473016
  22. Karihaloo, B.L. and Nallathambi, P. (1991), "Notched beam test: mode I fracture toughness", Fracture Mechanics Test methods for concrete, Report of RILEM Technical Committee 89-FMT (Edited by S.P. Shah and A. Carpinteri), Chamman & Hall, London, 1-86.
  23. Kim, J.K., Lee, Y. and Yi, S.T. (2004), "Fracture characteristics of concrete at early ages", Cement Concrete Res., 34, 507-519. https://doi.org/10.1016/j.cemconres.2003.09.011
  24. Kumar, S. and Barai, S.V. (2008), "Influence of specimen geometry and size-effect on the KR-curve based on the cohesive stress in concrete", Int. J. Fracture, 152, 127-148. https://doi.org/10.1007/s10704-008-9275-6
  25. Kumar, S. and Barai, S.V. (2009a), "Equivalence between stress intensity factor and energy approach based fracture parameters of concrete", Eng. Fract. Mech., 76, 1357-1372. https://doi.org/10.1016/j.engfracmech.2009.02.014
  26. Kumar, S. and Barai, S.V. (2009b), "Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen", Sadhana-Acad. P. Eng. S., 36(6), 987-1015.
  27. Kumar, S. and Barai, S.V. (2010), "Size-effect prediction from the double-K fracture model for notched concrete beam", Int. J. Damage Mech., 9, 473-497.
  28. Kwon, S.H., Zhao, Z. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve", Cement Concrete Res., 38, 1061-1069. https://doi.org/10.1016/j.cemconres.2008.03.014
  29. MATLAB, Version 7, The MathWorks, Inc., Copyright 1984-2004.
  30. Nallathambi, P. and Karihaloo, B.L. (1986), "Determination of specimen-size independent fracture toughness of plain concrete", Mag. Concrete Res., 38(135), 67-76. https://doi.org/10.1680/macr.1986.38.135.67
  31. Ouyang, C., Tang, T. and Shah, S.P. (1996), "Relationship between fracture parameters from two parameter fracture model and from size effect model", Mater. Struct., 29(2), 79-86. https://doi.org/10.1007/BF02486197
  32. Park, K., Paulino, G.H. and Roesler, J.R. (2008), "Determination of the kink point in the bilinear softening model for concrete", Eng. Fract. Mech., 7, 3806-3818.
  33. Petersson, P.E. (1981), "Crack growth and development of fracture zone in plain concrete and similar materials", Report No. TVBM-100, Lund Institute of Technology.
  34. Philip, P. (2009), "A quasistatic crack propagation model allowing for cohesive forces and crack reversibility", Interact. Multiscale Mech., 2(1), 31-44. https://doi.org/10.12989/imm.2009.2.1.031
  35. Planas, J. and Elices, M. (1990), "Fracture criteria for concrete: mathematical validations and experimental validation", Eng. Fract. Mech., 35, 87-94. https://doi.org/10.1016/0013-7944(90)90186-K
  36. Planas, J. and Elices, M. (1991), "Nonlinear fracture of cohesive material", Int. J. Fracture, 51, 139-157.
  37. Planas, J. and Elices, M. (1992), "Shrinkage eignstresses and structural size-effects", In Fracture Mechanics of Concrete Structures, Z.P. Bazant, ed., Elsevier Applied Science, London, 939-950.
  38. Planas, J., Elices, M. and Guinea, G.V. (1992), "Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation", Mater. Struct., 25, 305-312. https://doi.org/10.1007/BF02472671
  39. RILEM Draft Recommendation (TC50-FMC) (1985), "Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams", Mater. Struct., 18(4), 287-290. https://doi.org/10.1007/BF02472918
  40. RILEM Draft Recommendations (TC89-FMT) (1990a), "Determination of fracture parameters ( and CTODc) of plain concrete using three-point bend tests", Mater. Struct., 23(138), 457-460. https://doi.org/10.1007/BF02472029
  41. RILEM Draft Recommendations (TC89-FMT) (1990b), "Size-effect method for determining fracture energy and process zone size of concrete", Mater. Struct., 23(138), 461-465. https://doi.org/10.1007/BF02472030
  42. Roesler, J., Paulino, G.H., Park, K. and Gaedicke, C. (2007), "Concrete fracture prediction using bilinear softening", Cement Concrete Compos., 29, 300-312. https://doi.org/10.1016/j.cemconcomp.2006.12.002
  43. Tada, H., Paris, P.C. and Irwin, G. (1985), The stress analysis of cracks handbook, Paris Productions Incorporated, St. Louis, Missouri, USA.
  44. Tang, T., Shah, S.P. and Ouyang, C. (1992), "Fracture mechanics and size effect of concrete in tension", J. Struct. Eng. - ASCE, 118(11), 3169-3185. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3169)
  45. Xu, S. and Reinhardt, H.W. (1998), "Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture", Int. J. Fracture, 92, 71-99. https://doi.org/10.1023/A:1007553012684
  46. Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation", Int. J. Fracture, 98,111-149. https://doi.org/10.1023/A:1018668929989
  47. Xu, S. and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fracture, 98, 151-77. https://doi.org/10.1023/A:1018740728458
  48. Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: compact tension specimens and wedge splitting specimens", Int. J. Fracture, 98, 179-193. https://doi.org/10.1023/A:1018788611620
  49. Xu, S. and Zhang, X. (2008), "Determination of fracture parameters for crack propagation in concrete using an energy approach", Eng. Frac. Mech., 75, 4292-4308. https://doi.org/10.1016/j.engfracmech.2008.04.022
  50. Xu, S., Reinhardt, H.W., Wu, Z. and Zhao, Y. (2003), "Comparison between the double-K fracture model and the two parameter fracture model", Otto-Graf J., 14, 131-158.
  51. Zhao, Z., Kwon, S.H. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy", Cement Concrete Res., 38, 1049-1060. https://doi.org/10.1016/j.cemconres.2008.03.017

Cited by

  1. Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete vol.15, pp.2, 2015, https://doi.org/10.12989/cac.2015.15.2.199
  2. Determination of Double-K Fracture Parameters of Concrete Using Split-Tension Cube: A Revised Procedure vol.10, pp.2, 2016, https://doi.org/10.1007/s40069-016-0139-6
  3. Numerical simulation and modeling of ice shedding: Process initiation vol.142, 2014, https://doi.org/10.1016/j.compstruc.2014.06.001
  4. Analytical methods for determination of double-K fracture parameters of concrete vol.1, pp.4, 2013, https://doi.org/10.12989/acc2013.1.4.319
  5. Stress-Strain Behavior of Cementitious Materials with Different Sizes vol.2014, 2014, https://doi.org/10.1155/2014/919154
  6. Effect of size and cohesive assumptions on the double- K fracture parameters of concrete vol.166, 2016, https://doi.org/10.1016/j.engfracmech.2016.09.001
  7. Crack propagation and deviation in bi-materials under thermo-mechanical loading vol.50, pp.4, 2014, https://doi.org/10.12989/sem.2014.50.4.441
  8. Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete vol.2, pp.3, 2014, https://doi.org/10.12989/acc.2014.2.3.229
  9. Determination of double- K fracture parameters of concrete using peak load method vol.131, 2014, https://doi.org/10.1016/j.engfracmech.2014.09.004
  10. A New Procedure for Mode I Fracture Characterization of Cement-Based Materials vol.51, pp.6, 2015, https://doi.org/10.1111/str.12165
  11. Impact of particle packing mix design method on fracture properties of natural and recycled aggregate concrete pp.8756758X, 2018, https://doi.org/10.1111/ffe.12963
  12. Simplified equations for determining double-K fracture parameters of concrete for 3-point bending test vol.41, pp.7, 2018, https://doi.org/10.1111/ffe.12800
  13. Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC) vol.19, pp.1, 2012, https://doi.org/10.12989/cac.2017.19.1.099
  14. Influence of nano-silica on the failure mechanism of concrete specimens vol.19, pp.4, 2012, https://doi.org/10.12989/cac.2017.19.4.429
  15. A review paper about experimental investigations on failure behaviour of non-persistent joint vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.535
  16. Size effect on strength of Fiber-Reinforced Self-Compacting Concrete (SCC) after exposure to high temperatures vol.21, pp.6, 2012, https://doi.org/10.12989/cac.2018.21.6.681
  17. Size effect study on compressive strength of SCLC vol.23, pp.6, 2012, https://doi.org/10.12989/cac.2019.23.6.409
  18. Real-time comprehensive image processing system for detecting concrete bridges crack vol.23, pp.6, 2012, https://doi.org/10.12989/cac.2019.23.6.445
  19. Research on the Size Effect of Unstable Fracture Toughness by the Modified Maximum Tangential Stress (MMTS) Criterion vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/3986367
  20. Impact of Particle Packing Method of Design Mix on Fracture Behavior of Concrete: Critical Analysis vol.32, pp.4, 2012, https://doi.org/10.1061/(asce)mt.1943-5533.0003138
  21. Crack mechanisms in concrete - from micro to macro scale vol.19, pp.4, 2020, https://doi.org/10.35784/bud-arch.2147
  22. Prediction of fracture parameters of concrete using an artificial neural network approach vol.258, pp.None, 2012, https://doi.org/10.1016/j.engfracmech.2021.108090
  23. Influential factors for double-K fracture parameters analyzed by the round robin tests of RILEM TC265-TDK vol.54, pp.6, 2012, https://doi.org/10.1617/s11527-021-01791-x
  24. Size effects on the characteristics of fracture process zone of plain concrete under three-point bending vol.315, pp.None, 2012, https://doi.org/10.1016/j.conbuildmat.2021.125725