• Title/Summary/Keyword: size dependent behavior

Search Result 254, Processing Time 0.023 seconds

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.

Particle Size-Dependent Failure Analysis of Particle-Reinforced Metal Matrix Composites using Dislocation Punched Zone Modeling (전위 펀치 영역 모델링에 의한 입자 강화 금속지지 복합재의 입자 크기 의존 파손 해석)

  • Suh, Yeong Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.275-282
    • /
    • 2014
  • Particle-reinforced metal matrix composites exhibit a strengthening effect due to the particle size-dependent length scale that arises from the strain gradient, and thus from the geometrically necessary dislocations between the particles and matrix that result from their CTE(Coefficient of Thermal Expansion) and elastic-plastic mismatches. In this study, the influence of the size-dependent length scale on the particle-matrix interface failure and ductile failure in the matrix was examined using finite-element punch zone modeling whereby an augmented strength was assigned around the particle. The failure behavior was observed by a parametric study, while varying the interface failure properties such as the interface strength and debonding energy with different particle sizes and volume fractions. It is shown that the two failure modes (interface failure and ductile failure in the matrix) interact with each other and are closely related to the particle size-dependent length scale; in other words, the composite with the smaller particles, which is surrounded by a denser dislocation than that with the larger particles, retards the initiation and growth of the interface and matrix failures, and also leads to a smaller amount of decrease in the flow stress during failure.

Testosterone-encapsulated Surfactant-free Nanoparicles of Poly(DL-lactide-co-glycolide): Preparation and Release Behavior

  • Jeong, Young-Il;Shim, Yong-Ho;Song, Ki-Chan;Park, Youeng-Guen;Ryu, Hwa-Won;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1579-1584
    • /
    • 2002
  • Since surfactant or emulsifiers remained on the nanoparticle surface significantly affect the physicochemical properties, the biodegradation rate, the biodistribution, and the biocompatibility of nanoparticles, surfactant-free nanoparticles should be good candidate. surfactant-free PLGA nanoparticles were successfully prepared by both the dialysis method and the solvent diffusion method. The PLGA nanoparticles prepared using the solvent diffusion method has a smaller particle size than the dialysis method. The solvent diffusion method was better for a higher loading efficiency than the dialysis method but the nanoparticle yield was lower. Testosterone (TST) release from the PLGA nanoparticles was dependent on the particle size rather than the drug contents. Testosterone release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone was faster than those prepared by the dialysis method. TST release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone and the dialysis method using dimethylformamide (DMF) was completed for 4 days while the PLGA nanoparticles prepared by the dialysis method using acetone showed approximately 80% TST release after 4 days. Since the PLGA nanoparticle degradation ratio was below 20% within 5 days at all samples while TST release completed within 4 days, TST release was dependent on the diffusion mechanism rather than degradation.

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.

Numerical analysis for behavior of outer concrete tank in emergency LNG spillage

  • Lee, Jeong Su;Park, Chan Kyu;Lee, Yun;Kim, Ji-Hoon;Kwon, Seung Hee
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.369-385
    • /
    • 2014
  • In the existing method for analyzing the liquid tightness of the outer concrete tank in an emergency LNG spillage, the temperature variation over time inside the tank, and the concrete properties dependent on temperature and internal moisture content, have not been taken into account. In this study, the analyses for a typical LNG concrete tank subjected to thermal load due to spillage were performed with three different cases: the existing method was adopted in the first case, the transient temperature variation was considered in the second, and the temperature-moisture content dependent concrete properties were taken into account as well as the transient states of temperature in the third. The analysis results for deformation, compressive zone size, cracking, and stress of reinforcements were compared, and a discussion on the difference between the results obtained from the different analysis cases was made.

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

Etching and Polishing Behavior of Cu thin film according to the additive chemicals

  • Ryu, Ju-Suk;Eom, Dae-Hong;Hong, Yi-Koan;Park, Jum-Yong;Park, Jin-Goo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.274-278
    • /
    • 2002
  • The purpose of this study was to characterize the reaction of Cu surface with Cu slurry and CMP performance as a function of additives in CMP slurry. The polish rate of Cu was dependent on the kind of organic acids added in slurry. It was considered that polish rate of Cu was dependent on the concentration of carboxylates and mean particle size. When the etchant and oxidant were added in slurry, the highest removal rate and lower etch rate were measured at neutral pH. The addition of etchant, oxidant and pH adjustor played key roles of CMP ability in slurry. As the pH increased, polish rate of Cu was increased by the enhanced the mechanical effects due to effective dispersion of slurry particles. Alumina abrasives was more desirable for 1st step slurry because of high removal rate of Cu and high selectivity ratio among TaN and Cu.

  • PDF

Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Civalek, Omer;Vinyas, Mahesh
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • This paper infer the transient vibration of piezoelectric sandwich nanobeams, In present work, the flexoelectric effect on the mechanical properties of vibration piezoelectric sandwich nanobeam with different boundary conditions is investigated. According to the Nonlocal elasticity theory in nanostructures, the flexoelectricity is believed to be authentic for such size-dependent properties. The governing equations are derived by Hamilton's principle and boundary condition solved by Galerkin-based solution. This research develops a nonlocal flexoelectric sandwich nanobeam supported by Winkler-Pasternak foundation. The results of this work indicate that natural frequencies of a sandwich nanobeam increase by increasing the Winkler and Pasternak elastic constant. Also, increasing the nonlocal parameter at a constant length decreases the natural frequencies. By increasing the length to thickness ratio (L/h) of nanobeam, the nonlocal frequencies reduce.

Nonlinear Finite Element Analysis of Reinforced and Prestressed Concrete Structures (철근 및 프리스트레스트 콘크리트 구조물의 비선형 유한요소 해석)

  • Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.269-279
    • /
    • 1994
  • This paper concentrates on the finite element analysis of concrete structures considering the material nonlinearity and time-dependent structural behavior. Using the rotating crack model among the smeared cracking model, the structural behavior up to ultimate load is simulated, and concrete is assumed to be an orthotropic material. Especially to include the tension stiffening effect in bending behavior, a criterion based on the fracture mechanics concept is introduced and the numerical error according to the finite element mesh size can be minimized through the application of the proposed criterion. Besides, the governing equation for steel is systematized by embeded model to cope with the difficulty in modeling of complex geometry. Finally, to trace the structural behavior with time under cracked and/or uncracked section, an algorithm for the purpose of time-dependent analysis is formulated in plane stress-strain condition by the age-adjusted effective modulus method.

  • PDF

A Study on the Buckling Behavior of the Web of Box Girders (상자형 복부판의 좌굴 거동에 관한 연구)

  • Lee, Sang Woo;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.37-49
    • /
    • 1997
  • The buckling behavior of the web of steel girders are largely dependent on the size and the location of stiffeners and the restraining effect of top and bottom flanges. Elastic and inelastic buckling analyses based or the Spline Finite Strip Method were executed to study the stiffening effect of the longitudinal stiffener on the web of box girders and to find how the top and bottom flanges had effects on the web, where geometric boundary conditions were limited by both hinged, both fixed and the flange sections. The basic assumption for the longitudinal end boundary conditions was that the vertical stiffeners had the rigidity enough to force nil deflection line on the web panel so that the junction line between web and vertical stiffener was assumed to be hinged boundary conditions. The provisions on the longitudinal stiffener of the plate and box girders of the Korean Standard Highway Bridge Specifications(1995) and AASHTO Specifications(1994 LRFD) were compared with the results obtained numerically for the various longitudinal stiffener size of box girders. Simple equations and design curves for the longitudinal stiffener of the web were proposed for the practical use.

  • PDF