DOI QR코드

DOI QR Code

Testosterone-encapsulated Surfactant-free Nanoparicles of Poly(DL-lactide-co-glycolide): Preparation and Release Behavior


Abstract

Since surfactant or emulsifiers remained on the nanoparticle surface significantly affect the physicochemical properties, the biodegradation rate, the biodistribution, and the biocompatibility of nanoparticles, surfactant-free nanoparticles should be good candidate. surfactant-free PLGA nanoparticles were successfully prepared by both the dialysis method and the solvent diffusion method. The PLGA nanoparticles prepared using the solvent diffusion method has a smaller particle size than the dialysis method. The solvent diffusion method was better for a higher loading efficiency than the dialysis method but the nanoparticle yield was lower. Testosterone (TST) release from the PLGA nanoparticles was dependent on the particle size rather than the drug contents. Testosterone release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone was faster than those prepared by the dialysis method. TST release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone and the dialysis method using dimethylformamide (DMF) was completed for 4 days while the PLGA nanoparticles prepared by the dialysis method using acetone showed approximately 80% TST release after 4 days. Since the PLGA nanoparticle degradation ratio was below 20% within 5 days at all samples while TST release completed within 4 days, TST release was dependent on the diffusion mechanism rather than degradation.

Keywords

References

  1. Alleman, E.; Gurny, R.; Doelker, E. Eur. J. Pharm. Biopharm. 1993, 39, 173.
  2. Couvreur, P.; Fattal, E.; Andremont, A. Pharm. Res. 1991, 8, 1079. https://doi.org/10.1023/A:1015885814417
  3. Kreuter, J. J. Control. Release 1991, 16, 169. https://doi.org/10.1016/0168-3659(91)90040-K
  4. Lee, S. C.; Oh, J. T.; Jang, M. H.; Chung, S. I. J. Control. Release 1999, 59, 123. https://doi.org/10.1016/S0168-3659(98)00185-0
  5. Sjostrom, B.; Bergenstahl, B.; Kronberg, B. J. Pharm. Sci. 1993, 82, 584. https://doi.org/10.1002/jps.2600820608
  6. Witschi, C.; Doelker, E. Eur. J. Pharm. Biopharm. 1997, 43, 215. https://doi.org/10.1016/S0939-6411(96)00037-9
  7. Fessi, H.; Puisieux, F.; Devissaguet, J. P.; Ammoury, N.; Benita, S. Int. J. Pharm. 1989, 55, R1. https://doi.org/10.1016/0378-5173(89)90281-0
  8. Guterres, S. S.; Fessi, H.; Barratt, G.; Devissaguet, J. P.; Puisieux, F. Int. J. Pharm. 1995, 113, 57. https://doi.org/10.1016/0378-5173(94)00177-7
  9. Govender, T.; Stolnik, S.; Garnett, M. C.; Illum, L.; Davis, S. S. J. Controlled Release 1999, 57, 171. https://doi.org/10.1016/S0168-3659(98)00116-3
  10. Carrio, A.; Schwach, G.; Coudane, J.; Vert, M. J. Controlled Release 1995, 37, 113. https://doi.org/10.1016/0168-3659(95)00070-O
  11. Lasic, D. D. Nature 1992, 355, 279. https://doi.org/10.1038/355279a0
  12. Kwon, G. S.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Pharm. Res. 1995, 12, 192. https://doi.org/10.1023/A:1016266523505
  13. Nah, J. W.; Jeong, Y. I.; Cho, C. S. J. Polym. Sci. B Polym. Phys. 1998, 36, 415. https://doi.org/10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-Q
  14. Peracchia, M. T.; Gref, R.; Minamitake, Y.; Domb, A.; Lotan, N.; Langer, R. J. Control. Release 1997, 46, 223. https://doi.org/10.1016/S0168-3659(96)01597-0
  15. La, S. B.; Okano, T.; Kataoka, K. J. Pharm. Sci. 1996, 85, 85. https://doi.org/10.1021/js950204r
  16. Yoshioka, T.; Hashida, M.; Muranishi, S.; Sezaki, H. Int. J. Pharm. 1981, 81, 131.
  17. Illum, L.; Davis, S. S.; Wilson, C. G.; Frier, M.; Hardy, J. G.; Thomas, N. W. Int. J. Pharm. 1982, 12, 135. https://doi.org/10.1016/0378-5173(82)90113-2
  18. Illum, L.; Hunneyball, I. M.; Davis, S. S. Int. J. Pharm. 1986, 29, 53. https://doi.org/10.1016/0378-5173(86)90199-7
  19. Dunn, S. E.; Brindley, A.; Davis, S. S.; Davies, M. C.; Illum, L. Pharm. Res. 1994, 11, 1016. https://doi.org/10.1023/A:1018939521589
  20. Muller, R. H.; Wallis, K. H.; Troster, S. D.; Kreuter, J. J. Control. Release 1992, 20, 237. https://doi.org/10.1016/0168-3659(92)90126-C
  21. Scholes, P. D.; Coombes, A. G. A.; Illum, L.; Davis, S. S.; Vert, M.; Davies, M. C. J. Control. Release 1993, 25, 145. https://doi.org/10.1016/0168-3659(93)90103-C
  22. Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Science 1994, 263, 1600. https://doi.org/10.1126/science.8128245
  23. Leroux, J. C.; Alleman, E.; Jaeghere, F. D.; Doelker, E.; Gurny, R. J. Controll. Release 1996, 39, 339. https://doi.org/10.1016/0168-3659(95)00164-6

Cited by

  1. Effect of cryoprotectants on the reconstitution of surfactant-free nanoparticles of poly(DL-lactide-co-glycolide) vol.22, pp.6, 2005, https://doi.org/10.1080/02652040500162659
  2. Synthesis and characterization of PLGA nanoparticles vol.17, pp.3, 2006, https://doi.org/10.1163/156856206775997322
  3. Evaluation of alkyl polyglucoside as an alternative surfactant in the preparation of peptide-loaded nanoparticles vol.25, pp.8, 2008, https://doi.org/10.1080/02652040802075526
  4. Preparation and evaluation of polymer based microcarriers for all-trans-retinoic acid vol.18, pp.5, 2013, https://doi.org/10.3109/10837450.2011.644296
  5. Spatial Control over Chemical Functionalization of Biodegradable Poly(glycolic acid) (PGA) Sutures: Bulk vs. Surface Functionalization vol.24, pp.11, 2003, https://doi.org/10.5012/bkcs.2003.24.11.1702
  6. 유화제로서 PEG-PPG 블록 공중합체를 이용한 Poly(DL-Lactide-co-Glycolide) 나노입자: 제조 및 지용성 약물의 로딩 vol.47, pp.5, 2002, https://doi.org/10.5012/jkcs.2003.47.5.479
  7. All-trans-retinoic acid release from core-shell type nanoparticles of poly(ε-caprolactone)/poly(ethylene glycol) diblock copolymer vol.273, pp.1, 2002, https://doi.org/10.1016/j.ijpharm.2003.12.012
  8. Formation of poly(L,D-lactide) spheres with controlled size by direct dialysis vol.48, pp.19, 2002, https://doi.org/10.1016/j.polymer.2007.07.053