• Title/Summary/Keyword: site-response effects

Search Result 259, Processing Time 0.026 seconds

A Study on the Test Bed Evaluation for the Ecological Restoration of Unused Road - Focused on the Experimental Construction Site in Young Dong Province of GyungBu Expressway(Seven years after construction.) - (폐도로 생태복원을 위한 시험시공지 평가 연구 - 경부선 영동군 황간지역 시험시공지에 대한 시공 후 7년 시점의 추적조사 -)

  • Jeon, Gi-Seong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.5
    • /
    • pp.47-57
    • /
    • 2016
  • In the recent years, the incidence of abandoned concrete roads have been increasing rapidly due to road improvements and facilities route construction, these abandoned expressway and unused roads are scattered throughout the country but the management system is not clear, they does not be an effectively managed because there is no maintenance cost. In response to these social concern and expectation, the Korea Expressway Corporation that is management authority of the expressway is developing policy initiatives and various projects to restore the closed road to ecological for eco-friendly projects of the existing expressway. And as part of these projects, Hwanggan IC unmanaged abandoned concrete roads restoration project was done and it was conducting monitoring for ecological restoration that is not one-off but sustainable. After test construction over seven years at the time, test construction of four ways enforced but the boundaries have become blurred over time. And Pinus koraiensis, Callicarpa dichotoma and Sorbaria stellipilla var. typica planted in the site are dominating, else Amorpha fruticosa and Indigofera pseudotinctoria sowed are dominating. Invasive species is that Robinia pseudoacacia was growing in the colony. Over monitoring result time, the vegetation was taking root and the ecosystem was being restore. But the disturbance of vegetation happens due to planting of tree species that doesn't fit in the restoration area and advent of ecosystem Disturbing Species. The study will be providing a basic data that identify change of plant environment by monitoring of the site and soil environment during June to November 2016 and secure an objective evaluation data by analyzing the effects of ecological restoration for revegetation test bed evaluation for ecological restoration of expressway in ecological restoration construction in later.

The Effect of Clozapine on Central Insulin Response in Rats (항정신병약물 클로자핀이 흰쥐 뇌실로 주입한 인슐린의 반응에 미치는 영향)

  • Kim, Se Hyun;Yu, Hyun Sook;Park, So Young;Kim, Min Kyung;Park, Hong Geun;Kim, Yong Sik
    • Korean Journal of Biological Psychiatry
    • /
    • v.19 no.4
    • /
    • pp.187-192
    • /
    • 2012
  • Objectives Although antipsychotic drug clozapine has superior efficacy, this is hampered by metabolic side effects such as weight gain and diabetes. Recent studies demonstrate that clozapine induces insulin resistance. However, the identity and location of insulin resistance induced by clozapine has not been clarified. In this study, the effect of clozapine on central insulin response was investigated in rats. Methods Male Sprague-Dawley rats received intraperitoneal injection of clozapine or vehicle, which was followed by intracerebroventricular injection of insulin or its vehicle. The effects of clozapine on insulin-induced changes in blood glucose level and Akt phosphorylation in hypothalamus were investigated. Results Intraperitoneal injection of clozapine (20 mg/kg) increased blood glucose in rats. Intracerebroventricular injection of insulin reduced blood glucose in rats, which was blunted by pretreatment of clozapine. Accompanied with the antagonistic effect of clozapine to central insulin action in terms of blood glucose, clozapine inhibited the insulin-induced phosphorylation of Akt at Ser473 in rat hypothalamus. Conclusion Administration of clozapine inhibited the central insulin-induced changes in blood glucose and Akt phosphorylation in rat hypothalamus. These findings suggest that hypothalamus could be the site of action for the clozapine-induced insulin resistance.

Pharmacological Action of Machilus Thunbergii Siebold Zuccarini (한국산 생약제들의 혈압강하작용에 대한 연구 II. 한국산 후박수피의 혈압강하 작용)

  • Cho B.H.;Kim I.H.;Lee S.B.;Cho K.C.;Lee J.H.
    • The Korean Journal of Pharmacology
    • /
    • v.15 no.1_2 s.25
    • /
    • pp.45-56
    • /
    • 1979
  • With a view to searching after a new antihypertensive or hypotensive agents in the botanical crude plants, authors intended to reevaluate several natural products caltivated in Korea. This experiment was undertaken to compare pharmacogical actions of Machilus thunbergii Siebold et Zuccarini with those of Magnolia obovata Thunberg in anesthetized rats and in normal mice. Machilus thunbergii Sieb. et Zucc., a tree belonging to the Lauraceae family, is caltivated at Ull-ung Do, and their cortecies have been used as folk medicine mingled with those of Magnolia obovata Thunberg. These two cortecies have teen also applied in chinese medicine, it was advocated that these cortecies exerted good therapeutic effects on gastritis, convulsive abdominal pain, nausea, vomiting and urinary tract disorders. Therefore, we intended to determine the pharmacological action of two palnt of different family each other, especially their effects on blood pressure and heart rate, and also their mechanism of action were observed. We studied their action with extracts of hexane(MTHE), ether(MTEE), methanol(MTME) and water(MTWE) from Machilus thunhergii Sieb. et Zucc., and also fractionations of methanol(MOME), chloroform(MOCE) and water(MOWE) from Mapolia obovata Thunberg. The results of this experiment were as follows; 1) MTME, when intravenously administered to rats, elicited the significant hypotensive responses dependent on the administered dosage. 2) MOWE was also exhibited the hypotensive effect dependent on the treated dose. 3) Depressor effect of MTME was blocked by pretreatment with hexamethonium. 4) The hypotensive response of MOWE was blocked by pretreatment with hexamethonium or hrdralazine. 5) HTME and MOWE were also observed the anticonvulsive effect and sedative effect. These results suggested that MTME may induce the hypotensive response via central sympathetic effect, but the site of action in brain are not clarified, and the hypotensive effect of MOWE may be due to dual mechanism of central sympathetic action and direct vasodilation of blood vessel.

  • PDF

Effects of Recombinant Human Erythropoietin Treatment in Male Cynomolgus (Macaca fascicularis) Monkeys (II): Gene Expression Profiling in Spleen (게잡이 원숭이에서 Recombinant Human Erythropoietin의 4주간 투여 후 비장 유전자 발현 연구)

  • Yoon, Seok-Joo;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Kim, Dal-Hyun;Kwon, Myung-Sang;Han, Sang-Seop;Kim, Choong-Yong
    • Toxicological Research
    • /
    • v.21 no.3
    • /
    • pp.209-218
    • /
    • 2005
  • We investigated effects of recombinant human erythropoietin (rHuEPO) on profiles of mRNA transcripts in 6 male cynomolgus (M. fascicularis) monkey's spleen for 4 weeks. Six monkeys, composed of control and treatment group (Control : M1, M2, M3: Treatment : M4, M5, M6) were intravenously administered 3 times per week without or with a dose of rHuEPO 2730 IU/0.1 ml/kg. After 4 weeks rHuEPO treatment, spleen was removed for RNA isolation. Splenic gene expression was assessed using Affymetrix U133A 2.0 arrays containing 18,400 transcripts and variants, including 14,500 well-characterized human genes. Gene expression pattern was very different between individuals even in same treatment. In rHuEPO treated groups showed number of genes were up- or down-regulated (M4: 79: M5: 48; M6: 73 genes). Six genes (epidermal growth factor receptor, calgranulin A, estrogen receptor binding site associated antigen, matrix metalloproteinase 19, zinc finger and BTB domain containing 16, progestin and adipoQ receptor) were commonly expressed in rHuEPO treated group. The different individual response could be major considering factor in monkey experiment. Further study is needed to clarify the different individual response to rHuEPO in molecular level. This study will be valuable in the fundamental understanding and validation of molecular toxicology for bio-generic drugs including rHuEPO in cynomolgus monkey.

Site specific fragility modification factor for mid-rise RC buildings based on plastic energy dissipation

  • Merin Mathews;B.R. Jayalekshmi;Katta Venkataramana
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.331-344
    • /
    • 2024
  • The performance of reinforced concrete buildings subjected to earthquake excitations depends on the structural behaviour of the superstructure as well as the type of foundation and the properties of soil on which the structure is founded. The consideration of the effects due to the interaction between the structure and soil- foundation alters the seismic response of reinforced concrete buildings subjected to earthquake motion. Evaluation of the structural response of buildings for quantitative assessment of the seismic fragility has been a demanding problem for the engineers. Present research deals with development of fragility curve for building specific vulnerability assessment based on different damage parameters considering the effect of soil-structure interaction. Incremental Dynamic Analysis of fixed base and flexible base RC building models founded on different soil conditions was conducted using finite element software. Three sets of fragility curves were developed with maximum roof displacement, inter storey drift and plastic energy dissipated as engineering demand parameters. The results indicated an increase in the likelihood of exceeding various damage limits by 10-40% for flexible base condition with soft soil profiles. Fragility curve based on energy dissipated showed a higher probability of exceedance for collapse prevention damage limit whereas for lower damage states, conventional methods showed higher probability of exceedance. With plastic energy dissipated as engineering demand parameter, it is possible to track down the intensity of earthquake at which the plastic deformation starts, thereby providing an accurate vulnerability assessment of the structure. Fragility modification factors that enable the transformation of existing fragility curves to account for Soil-Structure Interaction effects based on different damage measures are proposed for different soil conditions to facilitate a congenial vulnerability assessment for buildings with flexible base conditions.

Effect of water cut-off by M.S.G. method for weathered soil and alluvial soil (풍화토 및 충적토 지반에 적용된 M.S.G공법의 차수효과)

  • 지덕진;우상백;강진기;김태한;박종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Generally, ordinary portland cement(OPC) is widely used for grouting to reduce permeability of ground under the foundations of structures. But, it is hard to be injected into the microscopic voids, fissures and crevices in soil or rock formation for the OPC material. Therefore new method what is called MSG(Micro Silica Grouting) has been developed recently to improve the weak point of the OPC material. In this case study, in order to verify performance of the MSG's water cut-off, trial injections were performed in rear of CIP(Cast in Place Pile) on the site A(weathered soil) and B(alluvial soil) that are constructed for the subway No. 9 nowadays. To take the proper grouting method of the MSG in the trial injecting, the injections are carried out for grouting types(constant pressure or fixed Quantity) and grouting methods(1.5shot or 2.0shot) and to confirm the effects of water cut-off and the injection range of the MSG, the tests of permeability and indicator(phenolphthalein) response were performed before and after the injection. Through the tests results, we could affirm the effects of water cut-off of the MSG and the injection range for the weathered and alluvial soil layers near the Han River. Finally we could make sure the application of the MSG method in actual construction under the layers.

  • PDF

Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons (흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF

Seismic resonance vulnerability assessment on shear walls and framed structures with different typologies: The case of Guadalajara, Mexico

  • Ramirez-Gaytan, Alejandro;Preciado, Adolfo;Flores-Estrella, Hortencia;Santos, Juan Carlos;Alcantara, Leonardo
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.263-275
    • /
    • 2022
  • Structural collapses can occur as a result of a dynamic amplification of either, the building's seismic response or the ground shaking by local site effects; one of the reasons is a resonance effect due to the proximity of the structural elastic fundamental period TE and the soil fundamental period TS. We evaluate the vulnerability to resonance effects in Guadalajara, México, in a three-step schema: 1) we define structural systems in the building environment of western Guadalajara, in terms of their construction materials and structural components; 2) we estimate TE with different equations, to obtain a representative value in elastic conditions for each structural system; and, 3) we evaluate the resonance vulnerability by the analysis of the ratio between TE and TS. We observe that the larger the soil fundamental period, the higher the resonance vulnerability for buildings with height between 17 and 39 m. For the sites with a low TS, the most vulnerable buildings will be those with a height between 2 and 9 m. These results can be a helpful tool for disaster prevention, by avoiding the construction of buildings with certain heights and structural characteristics that would result in a dangerous proximity between TE and TS.

Seismic behavior of the shallow clayey basins subjected to obliquely incident wave

  • Khanbabazadeh, Hadi;Iyisan, Recep;Ozaslan, Bilal
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.183-195
    • /
    • 2022
  • Under the effects of the near-field earthquakes, the incident angle of the incoming wave could be different. In this study, the influences of some parameters such as incident angle, basin edge, peak ground acceleration level of the bedrock motion as well as different clay types with different consistency on the amplification behavior of the shallow basins are investigated. To attain this goal, the numerical analyses of the basins filled with three different clay types are performed using a fully nonlinear method. The two dimensional models of the basins are subjected to a set of strong ground motions with different peak ground acceleration levels and three different incident angles of 30◦, 45◦ and 90◦ with respect to the horizontal axes. The results show the dominant effect of the obliquely subjected waves at most cases. The higher effect of the 45◦ incident angle on the basin response was concluded. In the other part of this study, the spectral amplification curves of the surface points were compared. It was seen that the maximum spectral amplification of different surface points occurs at different periods. Also, it is affected by the increase in the peak acceleration level of the incoming motions.

Effects on amplification of strong ground motion due to deep soils

  • Jakka, Ravi S.;Hussain, Md.;Sharma, M.L.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.663-674
    • /
    • 2015
  • Many seismically vulnerable regions in India and worldwide are located on deep soil deposits which extend to several hundred meters of depth. It has been well recognized that the earthquake shaking is altered by geological conditions at the location of building. As seismic waves propagates through uppermost layers of soil and rock, these layers serve as filter and they can increase the duration and amplitude of earthquake motion within narrow frequency bands. The amplification of these waves is largely controlled by mechanical properties of these layers, which are function of their stiffness and damping. Stiffness and damping are further influenced by soil type and thickness. In the current study, an attempt has been made to study the seismic site response of deep soils. Three hypothetical homogeneous soil models (e.g., soft soil, medium soil and hard soil) lying on bedrock are considered. Depth of half space is varied from 30 m to 2,000 m in this study. Controlled synthetic motions are used as input base motion. One dimensional equivalent linear ground response analyses are carried out using a computer package DEEPSOIL. Conventional approach of analysing up to 30 m depth has been found to be inadequate for deep soil sites. PGA values are observed to be higher for deeper soil profiles as compared to shallow soil profiles indicating that deeper soil profiles are more prone to liquefaction and other related seismic hazards under earthquake ground shaking. The study recommends to deal the deeper soil sections more carefully for estimating the amplification factors for seismic hazard assessment at the surface.