• Title/Summary/Keyword: sinusoidal wave

Search Result 298, Processing Time 0.033 seconds

Real-Time Implementation of Variable-Frequency Sinusoidal PWM with Harmonics Suppressing Characteristics. (고조파를 억제하는 가변 주파수 정현파 PWM의 실시간 구현)

  • Cho, Bon-Gu;Jin, Myung-Chul;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1071-1073
    • /
    • 1992
  • PWM technique is widely applied to the control of AC machines. In this paper a new PWM technique for real-time implementation of variable-frequency sinusoidal PWM is introduced. In the proposed algorithm, a low pass filter is used and the switching state is so determined as to minimize the difference between the reference wave and the output of the filter.

  • PDF

Linear Prediction Approach for Accurate Dual-Channel Sine-Wave Parameter Estimation in White Gaussian Noise

  • So, Hing-Cheung;Zhou, Zhenhua
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.641-644
    • /
    • 2012
  • The problem of sinusoidal parameter estimation at two channels with common frequency in white Gaussian noise is addressed. By making use of the linear prediction property, an iterative linear least squares (LLS) algorithm for accurate frequency estimation is devised. The remaining parameters are then determined according to the LLS fit with the use of the frequency estimate. It is proven that the variance of the frequency estimate achieves Cram$\acute{e}$r-Rao lower bound at sufficiently small noise conditions.

Topology of Single-Phase PFC Rectifier Circuit with Sinusoidal of Input Current (입력전류의 정현화에 의한 단상PFC정류회로의 토폴로지)

  • Lee, S.H.;Kim, Y.M.;Kwon, S.K.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.290-293
    • /
    • 2002
  • For small capacity rectifier circuits such as these for consumer electronics and appliances, capacitor input type rectifier circuits are generally used. Consequently, various harmonics generated within the power system become a serious problem. Various studies of this effect have been presented previously. However, most of these employ switching devices, such as FETs and the like. The absence of switching devices makes systems more tolerant to over-load, and brings low radio noise benefits. We propose a power factor connection scheme using a LC resonant in commercial frequency without switching devices. In this method, It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency, Hence, the harmonic characteristics can be significantly improved, where the lower order harmonics, such as the fifth and seventh orders are much reduced. The result are confirmed by the theoretical and experimental implementations.

  • PDF

SVPWM controlled the Three-phase AC to DC Boost Converter for High Power Factor (SVPWM 방식의 3상 고역율 AC-DC Boost 컨버터)

  • Na, Jae-Hyeong;Lee, Jung-Hyo;Kim, Kyung-Min;Lee, Su-Won;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.327-331
    • /
    • 2008
  • The problems of power factor and harmonics are occurred in converter system which used to SCRs and diodes as power semiconductor devices IGBT was solved that problem, maintain the input line current with sinusoidal wave current of input power source voltage. In this paper, three phase AC to DC boost converter that operates with unity power factor and sinusoidal input currents is presented. The current control of the converter is based on the space vector PWM strategy with fixed switching frequency and the input current tracks the reference current within one sampling time interval. Space vector PWM strategy for current control was materialized as a digital control method. By using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the dc link.

  • PDF

Analysis of nonlinear control systems with various diher signals (비선형제어계에 사용하는 제선형화신호의 해석)

  • 이상혁
    • 전기의세계
    • /
    • v.13 no.2
    • /
    • pp.5-10
    • /
    • 1964
  • Some nonlinearities in feedback control systems, such as relay servo, Coulomb friction, saturating amplifier of backlash in gears cause some undesirable effects. These may be static errors, limit cycles or jump phenomena. So, linearizing method of these nonlinearities using dither signals was first suggested by Loeb. He pointed out that the addition of high frequency signal to either the input or the output of a nonlinear system would make the nonlinear performance approximate the performance of linear systems. He used high-frequency sinusoidal wave as dither signal. But, in this thesis, general method of analysis is suggested for nonlinear control systmes using various dither signals, such as noise signal of Gaussian amplitude distribution, sinusoidal dither signal and sawtooth dither signal. Also, the advantage and disadvantage of these dither signals are compared. Throughout the analysis statistical method is adopted and lastly analog computer is used for the experiment of various nonlinear systems using dither signals.

  • PDF

Design and Implementation of phase sensitive RF Modulator/Demodulator using Amplitude Modulation (진폭변조방식을 이용한 Phase Sensitive RF Modulator/Demodulator의 설계 및 제작)

  • Kim, Jun-Woo;Chung, Jae-Ho;Mun, Chi-Woong;Oh, Chang-Hyun;Yi, Yun
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.167-170
    • /
    • 1995
  • A quadrature-channel MODEM using amplitude modulation was constructed. To test the MODEM, 6.4 MHz sinusoidal wave 1 KHz triangular wave were modulated, then the modulated signal was fed into the demodulator, to reconstruct the triangular wave.

  • PDF

The Static Characteristics Investigation of Lineal Pulse Motor According to Input Current Waveforms (입력 전류 파형에 따른 Linear Pulse Motor의 정특성 고찰)

  • Heo, Du-Suk;Kim, Kyung-Ho;Hwang, Dong-Won;Cho, Yoon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.747-749
    • /
    • 2003
  • When the input current wave forms of Linear Pulse Motor(LPM) is excited as three difference type such as the square, the rectangular and the micro sinusoidal wave, this paper is proposed the calculation of thrust on the base of magnetic equivalent circuit of LPM. The thrust is analyzed and compared by the analytical method, the F.E.M. and the experimental values. Also, to decide the input current wave for optimal operation condition, the vibration of LPM is experimented and estimated.

  • PDF

VISUALIZATION OF INTERNAL DEFECTS IN PLATE-TYPE NUCLEAR FUEL BY USING NONCONTACT OPTICAL INTERFEROMETRY

  • Park, Seung-Kyu;Park, Nak-Gyu;Baik, Sung-Hoon;Kang, Young-June
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.361-366
    • /
    • 2013
  • An imaging technique to visualize the internal defects in a plate-type nuclear fuel specimen was developed by using an active optical interferometer for a nondestructive quality inspection. A periodic thermal wave having a sinusoidal intensity pattern induced a periodical strain variation for the specimen. The varying strain image was acquired using an optical laser interferometer. The strain distribution over the internal defects will be distorted in an acquired strain image because a part of the thermal wave will be reflected from these defects during propagation. In this paper, internal defects were efficiently visualized by sequentially accumulating the extracted defect components. The experimental results confirmed that the developed visualization system can be a valuable tool to detect the internal defects in plate-type nuclear fuel.

Systematic Approach for Predicting Irregular Wave Transformation (불규칙파랑의 계통적 취급수법)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • It can be assumed that the ocean waves consist of many independent pure sinusoidal components which progress in arbitrary directions. To analyze irregular sea waves, both the spectrum method and the individual wave method have been used. The spectral approach is valid in the region where the water depth is deep and the linear property of velocity distribution is predominent, while the individual wave analysis method in the region where the water depth is shallow and the wave nonlinearity is significant. Therefore, to investigate the irregular wave transformation from the deep water to the shallow water region, it is necessary to relate the frequency spectrum which is estimated by the spectrum analysis method to the i oint probability distribution of wave height, period and direction affected by the boundary condition of the individual wave analysis method. It also becomes important to define the region where both methods can be applied. This study is a part of investigation to establish a systematic approach for analyzing the irregular wave transformation. The region where the spectral approach can be applied is discussed by earring out the experiments on the irregular wave transformation in the two-dimensional wave tank together with the numerical simulation. The applicability of the individual wave analysis method for predicting irregular wave transformation including wave shoaling and breaking and the relation between frequency spectrum and joint probability distribution of wave height and period are also investigated through the laboratory experiment and numerical simualtion.

  • PDF

Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (1): Modeling of Nonlinear Cavity Acoustics and its Evolution

  • Lee, Gil-Yong;Yoon, Woong-Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.26-32
    • /
    • 2006
  • This paper targets a direct and quantitative prediction of characteristics of unstable waves in a combustion chamber, which employs the governing equations derived in terms of amplification factors of flow variables. A freshly formulated nonlinear acoustic equation is obtained and the analysis of unsteady waves in a rocket engine is attempted. In the present formalism, perturbation method decomposes the variables into time-averaged part that can be obtained easily and accurately and time-varying part which is assumed to be harmonic. Excluding the use of conventional spatially sinusoidal eigenfunctions, a direct numerical solution of wave equation replaces the initial spatial distribution of standing waves and forms the nonlinear space-averaged terms. Amplification factor is also calculated independently by the time rate of changes of fluctuating variables, and is no longer an explicit function for compulsory representation. Employing only the numerical computation, major assumptions inevitably inherent, and in erroneous manner, in up to date analytical methods could be avoided. With two definitions of amplification factor, 1-D stable wave and 3-D unstable wave are examined, and clearly demonstrated the potentiality of a suggested theoretical-numerical method of combustion instability.