• Title/Summary/Keyword: sinusoidal wave

Search Result 298, Processing Time 0.035 seconds

Propagation Speed of Torsional Elastic Waves In a Cylinder with a Periodically Corrugated Outer Surface (외면이 주기적으로 울퉁불퉁한 실린더에서 비틂 탄성파의 전파속도)

  • 김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.54-60
    • /
    • 1999
  • The paper describes a theoretical study on the speed of the torsional elastic waves propagating in a circular cylinder whose outer radius varies periodically as a harmonic function of the axial coordinate. The approximate solution for the phase speed has been obtained using the perturbation technique for sinusoidal modulation of small amplitude. It is shown that the wave speed in the cylinder with a corrugated outer surface is less than that in a smooth cylinder by the square of the amplitude of the surface perturbation. This theoretical prediction agrees reasonably with an experimental observation reported earlier. It is also shown that the wave speed reduction due to the surface corrugation becomes larger for a thinner cylinder and for a bigger density of corrugation.

  • PDF

Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion

  • Cui, Ying;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.456-465
    • /
    • 2016
  • In order to optimize the performance of a Wells turbine with fixed guide vanes, the designs of an end plate and a ring on the tip of the turbine rotor are proposed as penetrating blade tip treatments. In this study, numerical investigations are made using computational fluid dynamics (CFD)-based ANSYS Fluent software, and validated by corresponding experimental data. The flow fields are analyzed and non-dimensional coefficients $C_A$, $C_T$ and ${\eta}$ are calculated under steady-state conditions. Numerical results show that the stalling phenomenon on a ring-type Wells turbine occurs at a flow coefficient of ${\phi}=0.36$, and its peak efficiency can reach 0.54, which is 16% higher than that of an unmodified turbine and 9% higher than in the case of an endplate-type turbine. In addition, quasi-steady analysis is used to calculate the mean efficiency and output work of a wave cycle under sinusoidal flow conditions. As a result, it has been found that the ring-type turbine is superior to other types of Wells turbines.

Ray-optical determination of the coupling coefficients of waveguide gratings by use of the rigorous coupled wave theory (회절격자구조를 갖는 도파로 소자의 엄밀한 광선광학적 결합계수 계산)

  • 박선택;송석호;오차환;김필수
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.348-353
    • /
    • 1999
  • Ray-optics approach based on the rigorous coupled wave theory, called by the rigorous ray-optics method (RROM), is developed for the calculation of couling coefficients of waveguide grating devices. The coupling coefficients of several grating structures, such as rectangular, sinusoidal, triangle, and trapezoidal shapes, are determined by the RROM, and they are compared with those obtained by conventional methods of the ray-optics method (ROM) and the coupled mode method (CMM). In the case of rectangular gratings, the coupling coefficients is evaluated in detail by various depths and duty-cycles of the grating. We have found that the RROM gives more exact solutions for the coupling coefficients of even arbitrary shapes of diffractive waveguide grating devices than the other conventional methods.

  • PDF

Simulation of Distributed Optical Fiber Sensors Using Spatially-Selective Brillouin Scattering (공간 선택적 브릴루앙 산란을 이용한 분포형 광섬유 센서의 시뮬레이션)

  • Yun, Seung-Chul;Seo, Min-Sung;Park, Hee-Gap
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.127-135
    • /
    • 2006
  • We implement numerical simulations for the distributed optical fiber sensor system that uses the spatially-selective Brillouin scattering, by treating the superposition of the optical-frequency-modulated pump/probe waves in the time domain. We obtain temporal and spatial distributions of Brillouin gain for various cases. Simulations are applied to the case of concatenated optical fibers of different kinds and the case of distributed temperature along the fiber, which give reasonable results for the distributed sensor. The result of using a triangular wave instead of a sinusoidal one as a modulation waveform shows that the triangular wave modulation has an advantage in spatial resolution.

Mode Analysis of Silica Waveguides with Semi Circular Cross Section by using the Method of Harmonic Expansion in Finite Area (유한영역에서 조화함수 전개법을 이용한 반달꼴 단면 이산화규소 광도파로의 모우드 분석)

  • 김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A computer routine for personal computer(PC/AT class) is developed to analysize the mode characteristics of silica based optical waveguides whose cross sections are of semi circular and other typical shapes. The basic algorithm used in the routine is to convert the wave equation into a matrix equation by expanding the wave function in terms of simple harmonic functions. The matrix elements are a set of overlap integrals of sinusoidal funtions with appropriate weight given by the distribution of refractive index over the waveguide cross section. The eigenvectors and eigenvalues of the matrix is then computed via diagonalization. We explain some practical problems that arises when implementing the algorithm into the routine. By using this routine we analyze the mode characteristics of silica based optical waveguides of semi circular and some other typical cross sections.

  • PDF

Study for Visualization of Rotating Sound Source Using Microphone Array (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Rhee, Wook;Park, Sung;Lee, Ja-Hyung;Kim, Jai-Moo;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.565-573
    • /
    • 2006
  • Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. The purpose of this research is development of beamforming technique can be applied to the rotor noise source identification. For the do-Dopplerization and reconstruction of emitted sound wave, Forward Propagation Method is applied to the time domain beamforming technique. And validation test were performed using rotating sound source constructed by bended pipe and horn driver. In the validation test using sinusoidal sound wave, sufficient performance of signal processing can be seen, and the effect of measuring duration for accuracy was compared. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies and collective pitch angle, in hover condition.

Theoretical and experimental analysis of wave propagation in concrete blocks subjected to impact load considering the effect of nanoparticles

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.711-718
    • /
    • 2017
  • Nanotechnology is a new filed in concrete structures which can improve the mechanical properties of them in confronting to impact and blast. However, in this paper, a mathematical model is introduced for the concrete models subjected to impact load for wave propagation analysis. The structure is simulated by the sinusoidal shear deformation theory (SSDT) and the governing equations of the concrete model are derived by energy method and Hamilton's principle. The silicon dioxide ($SiO_2$) nanoparticles are used as reinforcement for the concrete model where the characteristics of the equivalent composite are determined using Mori-Tanaka approach. An exact solution is applied for obtaining the maximum velocity of the model. In order to validate the theoretical results, three square models with different impact point and Geophone situations are tested experimentally. The effect of different parameters such as $SiO_2$ nanoparticles volume percent, situation of the impact, length, width and thickness of the model as well as velocity, diameter and height of impactor are shown on the maximum velocity of the model. Results indicate that the theoretical and experimental dates are in a close agreement with each other. In addition, using from $SiO_2$ nanoparticles leads to increase in the stiffness and consequently maximum velocity of the model.

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.

Rapid response control A Utility Interactive Photovoltaic Generation System (계통연계형 태양광발전 시스템의 속응성 제어)

  • Chung, Choon-Byeong;Jeon, Kee-Young;Lee, Sang-Hyun;Han, Kyung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.279-285
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Improvement of Output Characteristics by Triplen-Harmonics Injection in PWM Inverters (3배수차 고주파 주입에 의한 PWM인버터의 출력특성개선)

  • Lee, Sun-Ho;Joe, Jee-Won;Kim, Ho-Jin;Shin, Woo-Seok;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.295-300
    • /
    • 1990
  • This paper describes a new method to increase the fundamental output of PWM inverter by adding all triplen-harmonics to sinusoidal reference wave. As a result, the amplitude of the fundamental component is increased upto 21 percent compared with the conventional SPWM method, and hence the conversion efficiency of dc link is higher. Also as the commutation number of the inverter is decreased to two-thirds, the heating of the switch devices is reduced. In addition random carrier modulation is adopted to lower the acoustic noise at given frequency modulation index.

  • PDF