• Title/Summary/Keyword: sinusoidal wave

Search Result 298, Processing Time 0.029 seconds

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

A Study on the Dynamic Behavior of a Various Buried Pipeline (각종 매설관의 동적거동에 관한 연구)

  • Jeong, Jin-Ho;Lim, Chang-Kyu;Joeng, Du-Hwoe;Kook, Seung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.15-24
    • /
    • 2006
  • This work reports the results of our study on the dynamic response of various buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of free vibration. In order to investigate the response on the ground wave, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the forced vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration. The effects of the propagation direction and velocity and the frequency of ground wave on the dynamic responses of concrete, steel, and FRP pipes have been analyzed and then dynamic responses depending on the type of pipes have been compared. Through performing dynamic analyser for various boundary conditions and estimation of the location of maximum strain has been estimated for the type of pipes and boundary conditions.

Propagation characteristics of ultrasonic guided waves in tram rails

  • Sun, Kui;Chen, Hua-peng;Feng, Qingsong;Lei, Xiaoyan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.435-444
    • /
    • 2020
  • Ultrasonic guided wave testing is a very promising non-destructive testing method for rails, which is of great significance for ensuring the safe operation of railways. On the basis of the semi-analytical finite element (SAFE) method, a analytical model of 59R2 grooved rail was proposed, which is commonly used in the ballastless track of modern tram. The dispersion curves of ultrasonic guided waves in free rail and supported rail were obtained. Sensitivity analysis was then undertaken to evaluate the effect of rail elastic modulus on the phase velocity and group velocity dispersion curves of ultrasonic guided waves. The optimal guided wave mode, optimal excitation point and excitation direction suitable for detecting rail integrity were identified by analyzing the frequency, number of modes, and mode shapes. A sinusoidal signal modulated by a Hanning window with a center frequency of 25 kHz was used as the excitation source, and the propagation characteristics of high-frequency ultrasonic guided waves in the rail were obtained. The results show that the rail pad has a relatively little influence on the dispersion curves of ultrasonic guided waves in the high frequency band, and has a relatively large influence on the dispersion curves of ultrasonic guided waves in the low frequency band below 4 kHz. The rail elastic modulus has significant influence on the phase velocity in the high frequency band, while the group velocity is greatly affected by the rail elastic modulus in the low frequency band.

A Study on the Design of Single Phase Cycloconverter by Cosine Wave Crossing Control Method (코사인 점호방식에 의한 단상 싸이클로콘버터의 설계에 관한 연구)

  • 김시헌;안병원;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.71-85
    • /
    • 1993
  • The Cycloconverter that the author is going to treat in this paper, has strong advantages over the D.C. Link Inverter in points of chattering torque problem and natural commutation. Thus, the Cycloconverter is expected to be well applied to large and low-speed machines which require better speed control at low frequency. But the control circuit of Cycloconverter has two weak points described as follows. 1) Because of its rather complicated control circuit, it is likely to be illoperating due to unexpected noise signals, thus the higher the accuracy and reliability of the circuit is required to be, the more the circuit may cost. 2) Because the load current is not purely sinusoidal, the Cycloconverter may possibly be destroyed in case of inaccurate convert switching resulted from the difficulties in detecting the load current-zero and the current direction at the moment. In this paper, the author first of all intends to design and build a modified VVVF-type Noncirculating Current Cycloconverter to which recently proposed control methods are applied for improving the circuit simplicity, the control performance, and the system reliability. And then, experiments for observing the output waveforms of the Cycloconverter which is controlled by Singled-Board Computer using 8086 16-bit microprocesser are carried out. Finally the author concludes the result of this study as follows. 1) By replacing the conventional analog control circuits such as Reference Wave Generator, Cosine Timing Wave Generator, and Comparator with softwares, a great circuit simplicity is achieved. 2) The output of the designed Cycloconverter changes its frequency very fast without showing discontinuity of its waveform, and this waveform characteristics enables the smooth speed control of Induction Motor. 3) The design control circuit of Cycloconverter can be applied to the systems of 12 or 24 pulses because of its short processing period.

  • PDF

Design of Wave Energy Extractor with a Linear Electric Generator -Part II. Linear Generator (선형발전기가 탑재된 파랑에너지 추출장치 설계 -II. 선형발전기)

  • Cho, Il Hyoung;Choi, Jang Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.174-181
    • /
    • 2014
  • Design procedure of LEG(Linear Electric Generator) is introduced by performing the time-domain analysis for the heaving motion of a floating buoy coupled with LEG. A vertical truncated buoy is selected as a point absorber and a double-sided Halbach array mover and cored slotless stator is adopted as a linear electric generator. LEG with a double-sided Halbach array mover and cored slotless stator is designed with the input data such as the heave motion velocity and wave exciting forces in time-domain. The validity of designed LEG is confirmed by performing generating-characteristic-analysis under the sinusoidal motion of a buoy, based on the numerical techniques such as FE(Finite Element) analysis. In particular, an ECM(Equivalent Circuit Method) is employed as the design tool for the prediction of generating characteristics under irregular wave conditions. Finally, we confirm that the ECM gives reasonable and fast results without sacrifice of accuracy.

Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-foundation-structure Interaction (지반-기초-구조물 상호작용을 고려한 말뚝 기초 구조물에서의 지진 하중 평가)

  • Yoo, Min Taek;Ha, Jeong Gon;Jo, Seong-Bae;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • In this study, a series of dynamic centrifuge tests were performed for a soil-foundation-structural interaction system in dry sand with various embedded depths and superstructure conditions. Sinusoidal wave, sweep wave and real earthquake were used as input motion with various input acceleration and frequencies. Based on the results, a natural period and an earthquake load for soil-structure interaction system were evaluated by comparing the free-field and foundation accelerations. The natural period of free field is longer than that of the soil-foundation-structure system. In addition, it is confirmed that the earthquake load for soil-foundation-structure system is smaller than that of free-field in short period region. In contrast, the earthquake load for soil-foundation-structure interaction system is larger than that of free-field in long period region. Therefore, the current seismic design method, applying seismic loading of free-field to foundation, could overly underestimate seismic load and cause unsafe design for long period structures, such as high-rise buildings.

The Transition Control Technique between Sinusoidal-Wave and Square-Wave Driving Method in Inverter for PMSM (영구자석형 동기전동기용 인버터에서 정현파-구형파 운전 방식 사이의 전환 방법)

  • Lee, Seung-Yong;Yoon, Duck-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.113-114
    • /
    • 2016
  • 영구자석형 동기전동기를 구동하는 인버터에서는 기본적으로 정현파 운전 방식을 사용하지만 최근에는 구형파 운전 방식도 종종 사용되고 있다. 정현파 운전 방식은 구형파 운전 방식에 비해 토크 리플이 작고 기동 성능이 우수하며, 약자속 제어를 이용하여 정격 속도 이상의 고속 운전이 가능하다. 이에 비해 구형파 운전 방식은 제어 알고리즘이 간단하고 스위칭 손실이 적은 장점이 있지만, 토크 리플이 크고 정격 속도 이하의 영역에서만 운전이 가능하다는 단점이 있다. 최근에 인버터의 운전 중에 각각의 장점이 있는 이들 2가지 운전 방식을 서로 전환하는 방법으로 가전제품의 압축기와 같은 연속 부하에 적용하기 위한 연구가 진행되었다. 저속 구간에서는 스위칭 손실을 줄이기 위하여 구형파 운전 방식을 주로 사용하고, 고속 구간에서는 안정적인 제어 성능을 위하여 정현파 운전 방식을 사용한다. 또한, 이 2가지 운전 방식의 전환 구간에서의 발생되는 과도 상태를 짧게 줄이기 위하여 속도 및 전류 제어기의 제어 변수에 대한 초기화 방법이 제시되었다. 본 논문에서는 구형파 운전 구간의 속도 제어기에 비례 적분 전류 제어기를 추가하여 전류 리플을 감소시키고, 전환 구간에서의 속도 및 전류 제어기의 제어 변수에 대한 초기화 방법을 제시하였다.

  • PDF

A Study on IGBT inverter for sinusoidal wave output PAM type (정현파(正弦波) 출력(出力) PAM형(形) IGBT 인버터에 관한 연구(硏究))

  • Lee, Hyun-Woo;Park, Jong-Gi;Lee, Soo-Heum;Kwon, Soon-Kurl;Suh, Ki-Young;U, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.611-614
    • /
    • 1991
  • In variable speed driving system of three phase induction motor controlled by an inverter, because of the switching of semiconductor devices in inverter, an appreciable amount of harmonic components of voltage waveform can cause the motor to generate losses, torque ripple, acoustic noise and oscillation of semiconductor devices. In this paper a new PAM type PWM inverter using IGBT is described. The output waveforms in the proposed PAM type PWM inverter are investigated both theoretiically and experimentally. The line-voltage waveform is composed of fundamental component and the sidebands of carrier frequency. The lower order harmonics are not included in the output wave form. As each inverter arm does not operate during two-thirds period, the heats, generated in the devices are reduced. That is, the size of the inverter system can he minimized because of the reduction in the heat dissipating equipment.

  • PDF

An Analysis of the Sound Stopband in Periodically Corrugated 2-D Ducts (반복 주름을 갖는 이차원 덕트의 음파차단 해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • In this paper, the occurrence of a stopband phenomenon when an acoustic wave propagates through periodically corrugated ducts is discussed using theoretical and BEM analyses. A 2-D duct with sinusoidally corrugated upper and lower walls is considered. When the magnitude of the sinusoidal corrugation is sufficiently small compared to the duct's height, the wave equation is solved with the multiple scaling perturbation method. Then stopbands for Bragg and non-Bragg resonances are computed from the condition where frequency becomes a complex number. A 2-D BEM analysis is performed to compute insertion loss of the duct, and stopbands are confirmed as predicted by analytical analysis.

Model Estimation and Precise Position Control of an Antagonistic Actuation with Pneumatic Artificial Muscles (공압형 인공근육을 이용한 상극 구동의 모델 추정 및 정밀 위치제어)

  • Kang, Bong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.533-541
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit with pressure valves. Varying switching frequency to pressure valves from 0.1 Hz to 5 Hz, parameters of a linear model were estimated optimally to predict dynamic characteristics of the antagonistic actuation. A model-base control scheme with estimated parameters was built for the precise trajectory tracking of the antagonistic structure and realized on a reconfigurable embedded control system, CompactRIO. Experimental results showed that the proposed model-based control scheme gave good performance in trajectory tracking comparing with a PD control scheme when square wave and sinusoidal wave were given as references to follow.