• 제목/요약/키워드: singular value decomposition (SVD)

검색결과 220건 처리시간 0.028초

뇌종양의 등급분류를 위한 관류 자기공명영상을 이용한 투과성영상(Permeability Map)의 유용성 평가 (Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment)

  • 배성진;이영주;장혁원
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제32권3호
    • /
    • pp.325-334
    • /
    • 2009
  • 목 적 : 관류 자기공명영상(perfusion MRI)을 이용하여 대뇌(cerebral)에서 혈액뇌장벽의 파괴로 인하여 조영제가 혈관내에서 조직으로 빠져 나가는 투과성과 상대적 뇌혈류량을 영상화 해보고, 이 영상을 이용하여 구한 투과성비와 상대적 뇌혈류량비가 종양의 악성등급 평가와 감별진단에 어떠한 유용성이 있는지 알아보고자 하였다. 대상 및 방법 : 영상의학진단과 병리조직검사로 진단된 29명을 대상으로 뇌종양이 포함된 550(11 silce $\times$ 50 image)관류 자기공명영상을 3T기기에 장착된 프로그램으로 상대적 뇌혈류량을 영상화 하였고, 다른 한 방법은 개인 컴퓨터에 영상을 전송 후 IDL 6.2 프로그램을 이용하여 상대적 뇌혈류량(relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD)과 투과성을 영상화 하였다. 그 영상을 이용하여 동일한 관심영역으로 화소별 평균 신호강도를 정량적(quantitative analysis)으로 측정하여 비모수적 통계인 Kruskal-wallis test를 통해 뇌종양별로 평균비교 분석을 하였다. 결과 : 상대적 뇌혈류량영상과 투과성영상을 이용하여 동일한 관심영역으로 정상부위와 종양부위의 정량적으로 분석한 상대적 뇌혈류량 비 와 (3T 기기자체 분석한 값, IDL 6.2로 분석한 값) 투과성비에서 고등급 성상세포종(n=4)의 경우 (14.75, 19.25) 13.13, 저등급 성상세포종(n=5) (14.80, 15.90) 11.60, 아세포종(n=5) (10.90, 18.60) 22.00, 전이성 뇌종양(n=6) (11.00, 15.08) 22.33, 수막종(n=6) (18.58, 7.67) 5.58, 핍돌기 신경교종(n=3) (23.33, 16.33) 15.67로 나타났다. 결론 : 종양별로 상대적 혈류량영상을 이용하여 측정한 상대적 뇌혈류량 비는 등급을 분류하기에 용이하지 않았지만, 투과성영상으로 측정한 투과성비는 종양 악성정도가 높을수록 높은 것으로 나타나 종양의 등급 평가와 감별진단에 유용하였다.

  • PDF

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

LSA모형에서 다의어 의미의 표상 (Representation of ambiguous word in Latent Semantic Analysis)

  • 이태헌;김청택
    • 인지과학
    • /
    • 제15권2호
    • /
    • pp.23-31
    • /
    • 2004
  • 잠재의미분석은 단어 의미를 동일한 맥락 (문장/문서) 하에서 동시에 제시되는 단어들의 공기성(co-occurence)으로 정의한다. 이 분석에서 한 단어는 맥락들을 대표하는 측들로 구성된 다차원 상의 한 점으로 표상 되며, 단어 의미는 각 단어가 맥락 속에서 등장한 빈도로 정의된다. 이 다차원 의미공간은 SVD를 통하여 차원이 축소되어 추상된 의미를 표상 한다. 이 연구는 다의어의 표상이 가능하도록 LSA를 발전시켰다. 제안된 LSA는 축에 대한 해석이 가능하도록 축의 회전을 도입하였으며 다의어 표상을 가능하게 하였다. 시뮬레이션에서는, 먼저 LSA에 의해 산출된 단어-맥락 빈도표에서 다의어를 포함하고 있는 문서들만을 재 수집한 다음 문서들을 다의어 의미별로 분류하였다. 두 번째 단계에서는 다의어의 특정의미에 대한 표상을 분류된 단어-맥락 빈도표에서 비해당 의미에 대한 맥락들을 제거한 후 LSA를 적용하여 구성하였다. 시뮬레이션 결과는 다의어의 의미들을 LSA가 표상 할 수 있음을 보여주었다. 이는 축회전을 포함한 LSA가 다의어 다중의미를 표상 할 수 있고 실용적인 측면에서 웹검색 엔진에도 적용될 수 있음을 시사한다.

  • PDF

유도 전동기의 고장 검출 및 분류를 위한 특징 벡터 추출과 분류기의 다양한 설정에 따른 분류 성능 비교 (Feature Vector Extraction and Classification Performance Comparison According to Various Settings of Classifiers for Fault Detection and Classification of Induction Motor)

  • 강명수;뉘엔 투 낙;김용민;김철홍;김종면
    • 한국음향학회지
    • /
    • 제30권8호
    • /
    • pp.446-460
    • /
    • 2011
  • 최근 항공 산업, 자동차 산업 등의 산업 현장에서 유도 전동기의 사용이 증대되고 있으며, 유도 전동기는 산업 현장에서 중요한 역할을 하고 있다. 따라서 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이와 같은 이유로 본 논문에서는 유도 전동기의 고장을 조기에 검출하고 진단하기 위해 에너지 (short-time energy)와 특이치 분해와 이산 코사인 변환과 특이치 분해를 이용한 특징 벡터 추출 방법을 제안하였고, 이를 역 전파 신경 회로망과 다층 서포트 벡터 머신의 입력으로 이용하여 유도 전동기의 고장을 유형별로 분류하였다. 하지만 본 논문에서는 역 전파 신경 회로망과 다층 서포트 벡터 머신을 분류기로 사용함에 있어 역 전파 신경 회로망은 신경망을 구성하는 입력 뉴런 수, 은닉 뉴런 수, 학습 알고리즘에 의해 분류 성능이 달라지며, 다층 서포트 벡터 머신은 커널 함수로 사용한 가우시안 방사 기저 함수의 표준 편차 값에 따라 분류 성능이 달라지는 점을 고려하여 여러 가지 조건하에서의 실험을 통해 높은 분류 성능을 보이는 설정 방법을 제시하였다.

잡음 파워 스펙트럼 밀도 추정을 이용한 서로소 배열과 프로퍼게이터 기법 기반의 향상된 도래각 추정 기법 (Improved Direction of Arrival Estimation Based on Coprime Array and Propagator Method by Noise Power Spectral Density Estimation)

  • 변부근;유도식
    • 한국항행학회논문지
    • /
    • 제20권4호
    • /
    • pp.367-373
    • /
    • 2016
  • 우리는 도래각 (DoA; direction of arrival) 추정 방법 중 하나인 서로소 배열 기반의 프로퍼게이터 방법을 개선시키는 알고리즘을 제안한다. 서로소 배열 기반의 프로퍼게이터 방법은 특이값 분해없이 도래각을 추정하는 방법으로 서로소 배열 기반의 MUSIC에 비하여 현저히 낮은 복잡도를 지녔으나, 다소 저하된 도래각 추정 성능을 보인다. 우리는 이러한 성능 저하의 원인 중 하나로 잡음의 파워 스펙트럼 밀도를 포함하고 있는 신호의 자기상관행렬의 대각 성분이 사용되고 있지 않음에 있음을 파악하고, 잡음의 파워 스펙트럼 밀도가 장기간에 걸쳐 추정이 가능하다는 사실에 착안하여 신호의 자기상관행렬의 대각 성분을 사용하는 도래각 추정 방법을 제안한다. 우리는 시뮬레이션을 통해 우리가 제안한 방법이 기존의 서로소 배열 기반의 프로퍼게이터 방법보다 연산량을 4배정도 증가시키지만 탐지확률 95% 기준 하에 신호대 잡음비를 1.5dB, 도래각 분해능을 $0.7^{\circ}$ 만큼 개선시켜 그 성능이 서로소 배열 기반의 MUSIC에 보다 근접함을 관찰한다.

동해에서 해양음향토모그래피에 의한 중규모 현상 관측 (Observation of the Mesoscale Phenomena by Ocean Acoustic Tomography in the East Sea)

  • 나정열;한상규;이재학;심태보;김구
    • 한국해양학회지:바다
    • /
    • 제4권3호
    • /
    • pp.170-179
    • /
    • 1999
  • 동해 울릉분지에서 해양내부 수온구조를 파악하기 위하여 폭발성 수중음원(signal underwater sound, SUS)을 이용하여 해양음향 토모그래피 실험을 1997년 6월에 실시하였다. 토모그래피 실험은 $120{\times}120$ km 격자 바깥쪽 경계선에 SUS 21개를 항공기에서 단시간에 투하하였고 그 신호는 관측해역 남쪽에서 수직선배열 수선기로 수신하였다. 수평단면 역산모텔로 얻어진 수온 분포는 150-200 m 수심에서 난수성 소용돌이가 존재함을 보여주어 AXBT에 의한 실측 수온분포와 유사하게 나타났다. 수직모델 역산결과 수직 음속구조 형태는 AXBT 관측결과와 유사하나 250 m 보다 얕은 수심에서는 실제 관측값보다 높은 값을 나타내었다. SUS가 폭발한 수심과 시간이 갖는 불확실성을 고려하여 임의 오류값을 입력한 역산 실험결과는 150-200 m 수심에서 난수성 소용돌이 형태를 보여주나 절대 수온값이 $2^{\circ}C$ 정도 낮게 나타났다. 이러한 결과는 SUS를 음원으로 이용할 때 폭발 위치 및 폭발 시간 측정에 오류가 있음에도 불구하고 잘 발달된 중규모 해양현상을 추적하는데 SUS를 이용한 해양음향 토모그래피 적용 가능성이 매우 높음을 보여준다.

  • PDF

동적 양전자방출단층 영상 분석을 위한 소프트웨어 개발: DIA Tool (Software Development for Dynamic Positron Emission Tomography : Dynamic Image Analysis (DIA) Tool)

  • 편도영;김정수;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권3호
    • /
    • pp.369-376
    • /
    • 2016
  • 양전자방출단영상(Positron Emission Tomography, PET)은 여러 화합물과 방사성 동위원소를 결합하여 인체 내에 주입하여 인체 내의 대사율을 정량적으로 측정할 수 있는 핵의학적 검사이다. 특히, 암 조직에서 포도당 대사가 증가되는 현상을 $^{18}F$-FDG(Fluorodeoxyglucose)를 사용하여 널리 암 진단에 활용하며, 현대에서 발병 빈도가 높은 뇌질환 중 치매 및 파킨슨 진단에도 높은 유용성을 보인다는 연구가 다수 진행되었다. 이러한 현재의 정적 정보에 시간의 동적 정보를 포함하는 동적 양전자방출단층영상(dynamic PET, dPET)을 이용할 경우, 진단을 위한 추가적인 정보가 제공되므로 진단의 정확도 향상에 기여할 수 있다. 이러한 이유로 임상 연구자 및 방사선사의 큰 관심을 받고 있으나 연구를 진행하기 위해 손쉽게 사용 가능한 도구가 부족한 실정이며, 다양하고 복잡한 수학적 알고리즘(algorithm)이나 프로그래밍(programming) 기술이 부족할 경우 연구의 활성화를 방해하는 높은 진입장벽으로 존재하게 되므로, 본 연구에서는 dPET 연구의 활성화와 손쉬운 사용을 위해서 MATLAB을 이용하여 그래픽 유저(GUI) 기반으로 하여 무료 소프트웨어를 개발하였으며, 개발된 소프트웨어인 DIA-Tool(Dynamic Image analysis-Tool)은 복잡한 수학적 영상 분석 알고리즘을 누구나 손쉽게 사용할 수 있도록 설계되었다. 향후, 많은 임상 연구자들이 DIA-Tool을 이용하여 국내의 dPET 연구 발전에 큰 도움이 될 것이라 기대된다.

효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호 (Copyright Protection for Fire Video Images using an Effective Watermarking Method)

  • ;김종면
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권8호
    • /
    • pp.579-588
    • /
    • 2013
  • 본 논문에서는 화재 비디오 영상의 저작권 보호를 위해 효과적인 워터마킹 기법을 제안한다. 제안하는 워터마킹 기법은 명암도 동시발생 행렬과 퍼지 클러스터링 알고리즘을 이용하여 화재의 색상과 텍스처의 특징을 효율적으로 이용한다. 명암도 동시발생 행렬은 각 후보 화재 영상의 블록에 대한 에너지와 동질성을 계산하여 텍스처 데이터 셋을 만드는데 사용하며, 퍼지 클러스터링은 화재 비디오 영상의 색상 분할과 워터마커 삽입을 위한 텍스처 블록을 결정하기 위해 사용된다. 선택된 텍스처 블록은 이산 웨이블릿 변환을 통해 네 가지 서브밴드 (LL, LH, HL, HH)를 가지는 1차 레벨 웨이블릿 구조로 분해되고, 워터마커는 사람의 시각에 영향을 주지 않는 LH 영역에 삽입된다. 모의실험결과, 제안한 워터마킹 기법은 약 48 데시벨의 높은 첨부 신호 대 잡음 비와 1.6-2.0의 낮은 M-특이치 분해 값을 보였다. 또한, 제안한 워터마킹 기법은 노이즈 첨가, 필터링, 크로핑, JPEG 압축과 같은 영상처리 공격에서도 기존 이미지 워터마킹 알고리즘보다 정규화된 상관 값에서 높은 성능을 보였다.

인체의 위 조직 시료에서 자기공명영상장치를 이용한 확산계수 측정에 대한 기초 연구 (Ex Vivo MR Diffusion Coefficient Measurement of Human Gastric Tissue)

  • 문치웅;최기승;;;양영일;장희경;은충기
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.203-209
    • /
    • 2006
  • The aim of this study is to investigate the feasibility of ex vivo MR diffusion tensor imaging technique in order to observe the diffusion-contrast characteristics of human gastric tissues. On normal and pathologic gastric tissues, which have been fixed in a polycarbonate plastic tube filled with 10% formalin solution, laboratory made 3D diffusion tensor Turbo FLASH pulse sequence was used to obtain high resolution MR images with voxel size of $0.5{\times}0.5{\times}0.5mm^3\;using\;64{\times}32{\times}32mm^3$ field of view in conjunction with an acquisition matrix of $128{\times}64{\times}64$. Diffusion weighted- gradient pulses were employed with b values of 0 and $600s/mm^2$ in 6 orientations. The sequence was implemented on a clinical 3.0-T MRI scanner(Siemens, Erlangen, Germany) with a home-made quadrature-typed birdcage Tx/Rx rf coil for small specimen. Diffusion tensor values in each pixel were calculated using linear algebra and singular value decomposition(SVD) algorithm. Apparent diffusion coefficient(ADC) and fractional anisotropy(FA) map were also obtained from diffusion tensor data to compare pixel intensities between normal and abnormal gastric tissues. The processing software was developed by authors using Visual C++(Microsoft, WA, U.S.A.) and mathematical/statistical library of GNUwin32(Free Software Foundation). This study shows that 3D diffusion tensor Turbo FLASH sequence is useful to resolve fine micro-structures of gastric tissue and both ADC and FA values in normal gastric tissue are higher than those in abnormal tissue. Authors expect that this study also represents another possibility of gastric carcinoma detection by visualizing diffusion characteristics of proton spins in the gastric tissues.

자연어 처리 및 기계학습을 활용한 제조업 현장의 품질 불량 예측 방법론 (A Method for Prediction of Quality Defects in Manufacturing Using Natural Language Processing and Machine Learning)

  • 노정민;김용성
    • Journal of Platform Technology
    • /
    • 제9권3호
    • /
    • pp.52-62
    • /
    • 2021
  • 제조업 현장에서 제작 공정 수행 전 품질 불량 위험 공정을 예측하여 사전품질관리를 수행하는 것은 매우 중요한 일이다. 하지만 기존 엔지니어의 역량에 의존하는 방법은 그 제작공정의 종류와 수가 다양할수록 인적, 물리적 한계에 부딪힌다. 특히 원자력 주요기기 제작과 같이 제작공정이 매우 광범위한 도메인 영역에서는 그 한계가 더욱 명확하다. 본 논문은 제조업 현장에서 자연어 처리 및 기계학습을 활용하여 품질 불량 위험 공정을 예측하는 방법을 제시하였다. 이를 위해 실제 원자력발전소에 설치되는 주기기를 제작하는 공장에서 6년 동안 수집된 제작 기록의 텍스트 데이터를 활용하였다. 텍스트 데이터의 전처리 단계에서는 도메인 지식이 잘 반영될 수 있도록 단어사전에 Mapping 하는 방식을 적용하였고, 문장 벡터화 과정에서는 N-gram, TF-IDF, SVD를 결합한 하이브리드 알고리즘을 구성하였다. 다음으로 품질 불량 위험 공정을 분류해내는 실험에서는 k-fold 교차 검증을 적용하고 Unigram에서 누적 Trigram까지 여러 케이스로 나누어 데이터셋에 대한 객관성을 확보하였다. 또한, 분류 알고리즘으로 나이브 베이즈(NB)와 서포트 벡터 머신(SVM)을 사용하여 유의미한 결과를 확보하였다. 실험결과 최대 accuracy와 F1-score가 각각 0.7685와 0.8641로서 상당히 유효한 수준으로 나타났다. 또한, 수행해본 적이 없는 새로운 공정을 예측하여 현장 엔지니어들의 투표와의 비교를 통해서 실제 현장에 자연스럽게 적용할 수 있음을 보여주었다.