목 적 : 관류 자기공명영상(perfusion MRI)을 이용하여 대뇌(cerebral)에서 혈액뇌장벽의 파괴로 인하여 조영제가 혈관내에서 조직으로 빠져 나가는 투과성과 상대적 뇌혈류량을 영상화 해보고, 이 영상을 이용하여 구한 투과성비와 상대적 뇌혈류량비가 종양의 악성등급 평가와 감별진단에 어떠한 유용성이 있는지 알아보고자 하였다. 대상 및 방법 : 영상의학진단과 병리조직검사로 진단된 29명을 대상으로 뇌종양이 포함된 550(11 silce $\times$ 50 image)관류 자기공명영상을 3T기기에 장착된 프로그램으로 상대적 뇌혈류량을 영상화 하였고, 다른 한 방법은 개인 컴퓨터에 영상을 전송 후 IDL 6.2 프로그램을 이용하여 상대적 뇌혈류량(relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD)과 투과성을 영상화 하였다. 그 영상을 이용하여 동일한 관심영역으로 화소별 평균 신호강도를 정량적(quantitative analysis)으로 측정하여 비모수적 통계인 Kruskal-wallis test를 통해 뇌종양별로 평균비교 분석을 하였다. 결과 : 상대적 뇌혈류량영상과 투과성영상을 이용하여 동일한 관심영역으로 정상부위와 종양부위의 정량적으로 분석한 상대적 뇌혈류량 비 와 (3T 기기자체 분석한 값, IDL 6.2로 분석한 값) 투과성비에서 고등급 성상세포종(n=4)의 경우 (14.75, 19.25) 13.13, 저등급 성상세포종(n=5) (14.80, 15.90) 11.60, 아세포종(n=5) (10.90, 18.60) 22.00, 전이성 뇌종양(n=6) (11.00, 15.08) 22.33, 수막종(n=6) (18.58, 7.67) 5.58, 핍돌기 신경교종(n=3) (23.33, 16.33) 15.67로 나타났다. 결론 : 종양별로 상대적 혈류량영상을 이용하여 측정한 상대적 뇌혈류량 비는 등급을 분류하기에 용이하지 않았지만, 투과성영상으로 측정한 투과성비는 종양 악성정도가 높을수록 높은 것으로 나타나 종양의 등급 평가와 감별진단에 유용하였다.
추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.
잠재의미분석은 단어 의미를 동일한 맥락 (문장/문서) 하에서 동시에 제시되는 단어들의 공기성(co-occurence)으로 정의한다. 이 분석에서 한 단어는 맥락들을 대표하는 측들로 구성된 다차원 상의 한 점으로 표상 되며, 단어 의미는 각 단어가 맥락 속에서 등장한 빈도로 정의된다. 이 다차원 의미공간은 SVD를 통하여 차원이 축소되어 추상된 의미를 표상 한다. 이 연구는 다의어의 표상이 가능하도록 LSA를 발전시켰다. 제안된 LSA는 축에 대한 해석이 가능하도록 축의 회전을 도입하였으며 다의어 표상을 가능하게 하였다. 시뮬레이션에서는, 먼저 LSA에 의해 산출된 단어-맥락 빈도표에서 다의어를 포함하고 있는 문서들만을 재 수집한 다음 문서들을 다의어 의미별로 분류하였다. 두 번째 단계에서는 다의어의 특정의미에 대한 표상을 분류된 단어-맥락 빈도표에서 비해당 의미에 대한 맥락들을 제거한 후 LSA를 적용하여 구성하였다. 시뮬레이션 결과는 다의어의 의미들을 LSA가 표상 할 수 있음을 보여주었다. 이는 축회전을 포함한 LSA가 다의어 다중의미를 표상 할 수 있고 실용적인 측면에서 웹검색 엔진에도 적용될 수 있음을 시사한다.
최근 항공 산업, 자동차 산업 등의 산업 현장에서 유도 전동기의 사용이 증대되고 있으며, 유도 전동기는 산업 현장에서 중요한 역할을 하고 있다. 따라서 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이와 같은 이유로 본 논문에서는 유도 전동기의 고장을 조기에 검출하고 진단하기 위해 에너지 (short-time energy)와 특이치 분해와 이산 코사인 변환과 특이치 분해를 이용한 특징 벡터 추출 방법을 제안하였고, 이를 역 전파 신경 회로망과 다층 서포트 벡터 머신의 입력으로 이용하여 유도 전동기의 고장을 유형별로 분류하였다. 하지만 본 논문에서는 역 전파 신경 회로망과 다층 서포트 벡터 머신을 분류기로 사용함에 있어 역 전파 신경 회로망은 신경망을 구성하는 입력 뉴런 수, 은닉 뉴런 수, 학습 알고리즘에 의해 분류 성능이 달라지며, 다층 서포트 벡터 머신은 커널 함수로 사용한 가우시안 방사 기저 함수의 표준 편차 값에 따라 분류 성능이 달라지는 점을 고려하여 여러 가지 조건하에서의 실험을 통해 높은 분류 성능을 보이는 설정 방법을 제시하였다.
우리는 도래각 (DoA; direction of arrival) 추정 방법 중 하나인 서로소 배열 기반의 프로퍼게이터 방법을 개선시키는 알고리즘을 제안한다. 서로소 배열 기반의 프로퍼게이터 방법은 특이값 분해없이 도래각을 추정하는 방법으로 서로소 배열 기반의 MUSIC에 비하여 현저히 낮은 복잡도를 지녔으나, 다소 저하된 도래각 추정 성능을 보인다. 우리는 이러한 성능 저하의 원인 중 하나로 잡음의 파워 스펙트럼 밀도를 포함하고 있는 신호의 자기상관행렬의 대각 성분이 사용되고 있지 않음에 있음을 파악하고, 잡음의 파워 스펙트럼 밀도가 장기간에 걸쳐 추정이 가능하다는 사실에 착안하여 신호의 자기상관행렬의 대각 성분을 사용하는 도래각 추정 방법을 제안한다. 우리는 시뮬레이션을 통해 우리가 제안한 방법이 기존의 서로소 배열 기반의 프로퍼게이터 방법보다 연산량을 4배정도 증가시키지만 탐지확률 95% 기준 하에 신호대 잡음비를 1.5dB, 도래각 분해능을 $0.7^{\circ}$ 만큼 개선시켜 그 성능이 서로소 배열 기반의 MUSIC에 보다 근접함을 관찰한다.
동해 울릉분지에서 해양내부 수온구조를 파악하기 위하여 폭발성 수중음원(signal underwater sound, SUS)을 이용하여 해양음향 토모그래피 실험을 1997년 6월에 실시하였다. 토모그래피 실험은 $120{\times}120$ km 격자 바깥쪽 경계선에 SUS 21개를 항공기에서 단시간에 투하하였고 그 신호는 관측해역 남쪽에서 수직선배열 수선기로 수신하였다. 수평단면 역산모텔로 얻어진 수온 분포는 150-200 m 수심에서 난수성 소용돌이가 존재함을 보여주어 AXBT에 의한 실측 수온분포와 유사하게 나타났다. 수직모델 역산결과 수직 음속구조 형태는 AXBT 관측결과와 유사하나 250 m 보다 얕은 수심에서는 실제 관측값보다 높은 값을 나타내었다. SUS가 폭발한 수심과 시간이 갖는 불확실성을 고려하여 임의 오류값을 입력한 역산 실험결과는 150-200 m 수심에서 난수성 소용돌이 형태를 보여주나 절대 수온값이 $2^{\circ}C$ 정도 낮게 나타났다. 이러한 결과는 SUS를 음원으로 이용할 때 폭발 위치 및 폭발 시간 측정에 오류가 있음에도 불구하고 잘 발달된 중규모 해양현상을 추적하는데 SUS를 이용한 해양음향 토모그래피 적용 가능성이 매우 높음을 보여준다.
양전자방출단영상(Positron Emission Tomography, PET)은 여러 화합물과 방사성 동위원소를 결합하여 인체 내에 주입하여 인체 내의 대사율을 정량적으로 측정할 수 있는 핵의학적 검사이다. 특히, 암 조직에서 포도당 대사가 증가되는 현상을 $^{18}F$-FDG(Fluorodeoxyglucose)를 사용하여 널리 암 진단에 활용하며, 현대에서 발병 빈도가 높은 뇌질환 중 치매 및 파킨슨 진단에도 높은 유용성을 보인다는 연구가 다수 진행되었다. 이러한 현재의 정적 정보에 시간의 동적 정보를 포함하는 동적 양전자방출단층영상(dynamic PET, dPET)을 이용할 경우, 진단을 위한 추가적인 정보가 제공되므로 진단의 정확도 향상에 기여할 수 있다. 이러한 이유로 임상 연구자 및 방사선사의 큰 관심을 받고 있으나 연구를 진행하기 위해 손쉽게 사용 가능한 도구가 부족한 실정이며, 다양하고 복잡한 수학적 알고리즘(algorithm)이나 프로그래밍(programming) 기술이 부족할 경우 연구의 활성화를 방해하는 높은 진입장벽으로 존재하게 되므로, 본 연구에서는 dPET 연구의 활성화와 손쉬운 사용을 위해서 MATLAB을 이용하여 그래픽 유저(GUI) 기반으로 하여 무료 소프트웨어를 개발하였으며, 개발된 소프트웨어인 DIA-Tool(Dynamic Image analysis-Tool)은 복잡한 수학적 영상 분석 알고리즘을 누구나 손쉽게 사용할 수 있도록 설계되었다. 향후, 많은 임상 연구자들이 DIA-Tool을 이용하여 국내의 dPET 연구 발전에 큰 도움이 될 것이라 기대된다.
본 논문에서는 화재 비디오 영상의 저작권 보호를 위해 효과적인 워터마킹 기법을 제안한다. 제안하는 워터마킹 기법은 명암도 동시발생 행렬과 퍼지 클러스터링 알고리즘을 이용하여 화재의 색상과 텍스처의 특징을 효율적으로 이용한다. 명암도 동시발생 행렬은 각 후보 화재 영상의 블록에 대한 에너지와 동질성을 계산하여 텍스처 데이터 셋을 만드는데 사용하며, 퍼지 클러스터링은 화재 비디오 영상의 색상 분할과 워터마커 삽입을 위한 텍스처 블록을 결정하기 위해 사용된다. 선택된 텍스처 블록은 이산 웨이블릿 변환을 통해 네 가지 서브밴드 (LL, LH, HL, HH)를 가지는 1차 레벨 웨이블릿 구조로 분해되고, 워터마커는 사람의 시각에 영향을 주지 않는 LH 영역에 삽입된다. 모의실험결과, 제안한 워터마킹 기법은 약 48 데시벨의 높은 첨부 신호 대 잡음 비와 1.6-2.0의 낮은 M-특이치 분해 값을 보였다. 또한, 제안한 워터마킹 기법은 노이즈 첨가, 필터링, 크로핑, JPEG 압축과 같은 영상처리 공격에서도 기존 이미지 워터마킹 알고리즘보다 정규화된 상관 값에서 높은 성능을 보였다.
The aim of this study is to investigate the feasibility of ex vivo MR diffusion tensor imaging technique in order to observe the diffusion-contrast characteristics of human gastric tissues. On normal and pathologic gastric tissues, which have been fixed in a polycarbonate plastic tube filled with 10% formalin solution, laboratory made 3D diffusion tensor Turbo FLASH pulse sequence was used to obtain high resolution MR images with voxel size of $0.5{\times}0.5{\times}0.5mm^3\;using\;64{\times}32{\times}32mm^3$ field of view in conjunction with an acquisition matrix of $128{\times}64{\times}64$. Diffusion weighted- gradient pulses were employed with b values of 0 and $600s/mm^2$ in 6 orientations. The sequence was implemented on a clinical 3.0-T MRI scanner(Siemens, Erlangen, Germany) with a home-made quadrature-typed birdcage Tx/Rx rf coil for small specimen. Diffusion tensor values in each pixel were calculated using linear algebra and singular value decomposition(SVD) algorithm. Apparent diffusion coefficient(ADC) and fractional anisotropy(FA) map were also obtained from diffusion tensor data to compare pixel intensities between normal and abnormal gastric tissues. The processing software was developed by authors using Visual C++(Microsoft, WA, U.S.A.) and mathematical/statistical library of GNUwin32(Free Software Foundation). This study shows that 3D diffusion tensor Turbo FLASH sequence is useful to resolve fine micro-structures of gastric tissue and both ADC and FA values in normal gastric tissue are higher than those in abnormal tissue. Authors expect that this study also represents another possibility of gastric carcinoma detection by visualizing diffusion characteristics of proton spins in the gastric tissues.
제조업 현장에서 제작 공정 수행 전 품질 불량 위험 공정을 예측하여 사전품질관리를 수행하는 것은 매우 중요한 일이다. 하지만 기존 엔지니어의 역량에 의존하는 방법은 그 제작공정의 종류와 수가 다양할수록 인적, 물리적 한계에 부딪힌다. 특히 원자력 주요기기 제작과 같이 제작공정이 매우 광범위한 도메인 영역에서는 그 한계가 더욱 명확하다. 본 논문은 제조업 현장에서 자연어 처리 및 기계학습을 활용하여 품질 불량 위험 공정을 예측하는 방법을 제시하였다. 이를 위해 실제 원자력발전소에 설치되는 주기기를 제작하는 공장에서 6년 동안 수집된 제작 기록의 텍스트 데이터를 활용하였다. 텍스트 데이터의 전처리 단계에서는 도메인 지식이 잘 반영될 수 있도록 단어사전에 Mapping 하는 방식을 적용하였고, 문장 벡터화 과정에서는 N-gram, TF-IDF, SVD를 결합한 하이브리드 알고리즘을 구성하였다. 다음으로 품질 불량 위험 공정을 분류해내는 실험에서는 k-fold 교차 검증을 적용하고 Unigram에서 누적 Trigram까지 여러 케이스로 나누어 데이터셋에 대한 객관성을 확보하였다. 또한, 분류 알고리즘으로 나이브 베이즈(NB)와 서포트 벡터 머신(SVM)을 사용하여 유의미한 결과를 확보하였다. 실험결과 최대 accuracy와 F1-score가 각각 0.7685와 0.8641로서 상당히 유효한 수준으로 나타났다. 또한, 수행해본 적이 없는 새로운 공정을 예측하여 현장 엔지니어들의 투표와의 비교를 통해서 실제 현장에 자연스럽게 적용할 수 있음을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.