• Title/Summary/Keyword: single-span beam

Search Result 58, Processing Time 0.021 seconds

On mode localization of a weakly coupled beam system with spring-mass attachments

  • Huang, M.;Liu, J.K.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • There are a large number of papers in the literature dealing with the free vibration analysis of single/multi-span uniform beam with multiple spring-mass systems, but that of coupled multi-span beams carrying spring-mass attachments is rare. In this note, free vibration analysis of a weakly coupled beam system with spring-mass attachments is conducted. The mode localization and frequency loci veering phenomena of the coupled beam system are investigated. Studies show that for weakly coupled beam system with spring-mass attachments, the mode localization and frequency loci veering will occur once there is a disorder in the system.

Load-Frequency Relationships of Continuous Compression Members (다 경간 압축재의 하중-진동수 관계)

  • 이수곤;김순철;임동혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.335-340
    • /
    • 1998
  • The apparently different physical problems of lateral vibration and elastic stability of a linear member are limiting cases of a single phenomenon, the more general expression being the mode of vibration with end thrust. For a single-span beam-column, it is generally known that the square of the frequency of lateral vibration is approximately linearly related to compressive axial force. In this paper the relationship between the frequency and axial force of multi-span compression members is investigated by means of the finite element method.

  • PDF

Experimental and Application Examples of Composite Beams Strengthened by Lower End Compression Member and Upper Tension Reinforcement (단부 하부 압축재와 상부 인장 철근으로 보강한 합성보의 실험 및 적용 사례 연구)

  • Oh, Jung-Keun;Shim, Nam-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2019
  • The BX composite beam is designed to have the same cross-section regardless of the size of the momentum, which is a disadvantage of the existing steel structure. Combination of the H-beam end compressive material and the H-section steel tensile reinforcement according to the moment size in a single span, It is possible to say that it is an excellent synthesis which increases the performance. When underground and overhead structures are constructed, it is possible to reduce the bending, increase lateral stiffness, reduce construction cost, and simplify joints. The seamability of the joining part is a simple steel composite beam because of the decrease of the beam damping at the center of the beam and the use of the end plate of the new end compressing material. In the case of structures with long span structure and high load, it is advantageous to reduce the material cost by designing large steel which is high in price at less than medium steel.

A numerical model for externally prestressed beams

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.177-190
    • /
    • 1996
  • A method to numerically evaluate the behaviour of single span beams, prestressed with external tendons and symmetrically loaded is presented. This algorithm, based on the Finite Difference Method, includes second order effects and large displacements in an attempt to more fully understand the behaviour of the beam up to collapse. The numerical technique discussed is particularly appropriate for the analysis of R.C. and P.C. beams rehabilitated or strengthened by means of external prestressing but it is reliable for the analysis of new beams as well.

Connection rotation requirements on FRP-strengthened steel-concrete composite beam systems

  • Panagiotis M. Stylianidis;Michael F. Petrou
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.133-147
    • /
    • 2024
  • Composite beams of steel and concrete strengthened with fiber-reinforced polymers (FRP) may exhibit considerably enhanced flexural behaviour, but the combination of three materials with different characteristics and the various possible failure mechanisms that may govern performance make their analysis quite demanding. Previous studies provided significant insights into this problem and several methods were proposed for calculating flexural stiffness and strength, but these studies are restricted to the single member level of a simply supported composite beam section. However, the problem considerably changes when the beam is part of a frame system due to the degree of continuity provided by the surrounding structure, which represents the most common situation in practice. This paper explores the behaviour of semi-continuous FRP-strengthened composite beams, by considering the response characteristics of their end connections and their effects on overall performance. A novel analytical model is derived, which enables a step-by-step representation of the nonlinear relationship between an incremental mid-span design bending moment and corresponding connection rotations. After verification against finite element analyses, a parametric study is conducted which shows that the substantially increased bending moment resistance of FRP-strengthened composite beams can hardly be fully utilized due to a deficiency of corresponding large deformation capacity available in the connections. The extent to which the presence FRP strengthening can be exploited to enhance the beam flexural response depends on the interplay between various structural parameters, including the connection rotation capacity, the beam span, and the FRP modulus of elasticity and ultimate strength.

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.

A Field Survey on the Structure and Maintenance Status of Pipe Framed Greenhouses (파이프 골조 온실의 구조 및 유지관리실태 조사분석)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.106-114
    • /
    • 2000
  • An investigation was conducted to get the basic data for establishing maintenance strategy of pipe framed greenhouses. The contents of the investigation consisted of actual state of structures, maintenance status, meteorological disaster, and corrosion characteristics of pipe framework in greenhouses. the number of greenhouses investigated was 108 in total. Most multi-span greenhouses had narrower width and lower height than the standared 1-2W greenhouse, and most of single-span greenhouses were tunnel type. In multi-span greenhouses, the size and interval of frameworks such as rafter, purline, column , and cross beam were mostly suitable, but frameworks of single-span greenhouses were mostly insufficient. After about 7 years in grounds, 8 years in joints, 10 years in bending parts. and 13 years in columns. pipe surface was mostly rusted. Most weak parts in corrosion were pipes in contact with the ground, joints, roll-up shaft pipes, and pipes close to the gutter. Almost all of the greenhouse farmers didn't pay any attention to maintenance affair in a regular interval for pipe framed grenhouses. Many greenhouses have experienced the meteorologicla diaster such as uplift of foundation, partial or complete failure by the hyphoon and/or high winds.

  • PDF

A new damage detection indicator for beams based on mode shape data

  • Yazdanpanah, O.;Seyedpoor, S.M.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.725-744
    • /
    • 2015
  • In this paper, a new damage indicator based on mode shape data is introduced to identify damage in beam structures. In order to construct the indicator proposed, the mode shape, mode shape slope and mode shape curvature of a beam before and after damage are utilized. Mode shape data of the beam are first obtained here using a finite element modeling and then the slope and curvature of mode shape are evaluated via the central finite difference method. In order to assess the robustness of the proposed indicator, two test examples including a simply supported beam and a two-span beam are considered. Numerical results demonstrate that using the proposed indicator, the location of single and multiple damage cases having different characteristics can be accurately determined. Moreover, the indicator shows a better performance when compared with a well-known indicator found in the literature.

Crack identification in Timoshenko beam under moving mass using RELM

  • Kourehli, Seyed Sina;Ghadimi, Siamak;Ghadimi, Reza
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2018
  • In this paper, a new method has been proposed to detect crack in beam structures under moving mass using regularized extreme learning machine. For this purpose, frequencies of beam under moving mass used as input to train machine. This data is acquired by the analysis of cracked structure applying the finite element method (FEM). Also, a validation study used for verification of the FEM. To evaluate performance of the presented method, a fixed simply supported beam and two span continuous beam are considered containing single or multi cracks. The obtained results indicated that this method can provide a reliable tool to accurately identify cracks in beam structures under moving mass.

Vibration analysis of prestressed concrete bridge subjected to moving vehicles

  • Huang, M.;Liu, J.K.;Law, S.S.;Lu, Z.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.273-289
    • /
    • 2011
  • The vibration response of the bridges under the moving vehicular load is of importance for engineers to estimate the serviceability of existing bridges and to design new bridges. This paper deals with the three dimensional vibration analysis of prestressed concrete bridges under moving vehicles. The prestressed bridges are modeled by four-node isoparametric flat shell elements with the transverse shearing deformation taken into account. The usual five degrees-of-freedom (DOFs) per node of the element are appended with a drilling DOF to accommodate the transformation of the local stiffness and mass matrices to the global coordinates. The vehicle is modeled as a single or two-DOF system. A single-span prestressed Tee beam and two-span prestressed box-girder bridge are studied as the two numerical examples. The effects of prestress forces on the natural frequencies and dynamic responses of the bridges are investigated.