• 제목/요약/키워드: single-pulse source

검색결과 103건 처리시간 0.02초

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제12권7호
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

재래산양에 있어서 핵이식란의 융합조건이 융합 및 체외발달에 미치는 영향 (Effect of Fusion Condition on In Vitro Development of Caprine Cloned Oocytes with Nuclear Transfer)

  • 박희성;김태숙;이윤희;정수영;이명열;홍승표;박준규;김충희;정장용
    • Reproductive and Developmental Biology
    • /
    • 제28권2호
    • /
    • pp.127-132
    • /
    • 2004
  • 본 연구는 재래산양의 핵이식을 실시하여 공여세포의 조건, 전기적 세기 및 융합횟수 등이 융합율과 체외발달율에 미치는 영향을 조사하여 최적의 융합조건을 확립하고자 실시하였다. 공여세포는 귀 유래 섬유아세포와 태아 유래 섬유아세포 2종류를 분리 배양하여 사용하였으며, 수핵란의 채취는 성숙한 미경산 재래산양에 과배란을 유기하여 hCG 투여 후 제 35시간째에 외과적인 방법으로 in vivo (체내성숙)난자는 난관을 관류하는 방법으로 회수하고 in vitro (체외성숙)난자는 난포로부터 흡입하여 난포란을 채취하여 약 22시간 체외성숙을 실시하였다. 수핵난자는 난구세포를 제거한 다음 0.05 M sucrose를 처리하여 세포질이 양호하고 극체가 뚜렷하게 보이는 난자만을 선별하여 핵이식을 실시하였다. 핵이식란의 융합은 전기자극방법으로 융합을 실시하였으며, 핵이식 조작 후 약 3시간 동안 전배양을 실시한 다음 활성화를 유도하였다. 복제수정란은 0.8% BSA가 첨가된 mSOF 배양액으로 6∼7일 동안 체외 배양을 실시하였다. 귀 유래 섬유아세포를 공여세포로 사용하였을 때 융합율은 60.4%로서 태아 유래 섬유아세포의 40.3%보다는 높게 나타났다. 분할율에 있어서는 귀 유래 섬유아세포와 태아 유래 섬유아세포가 각각 47.6 및 48.2%로서 차이가 없었다. 2.40∼2.46 ㎸/cm로 전기자극을 주었을 때 융합율은 43.8%로서 1.30∼l.40 ㎸/cm(26.7%)와 2.30∼2.39 ㎸/cm (34.8%)가 높게 나타났으며, 융합이 이루어진 핵이식란의 분할율은 82.9(1.30∼l.40 ㎸/cm), 43.8(2.30∼2.39 ㎸/cm) 및 51.8%(2.40∼2.46 ㎸/cm)로서 전기자극의 세기에 따른 유의적(p<0.05)인 차이는 없었다. 전기융합을 1회 실시하였을 때 in vivo 난자는 43.5%로서 in vitro 난자의 23.6%보다 유의적으로 높게 나타났으며, 2회 실시하였을 때는 55.7(in vivo) 및 39.2%(in vitro)로 in vivo에서 높게 나타났다. 3회 자극을 주어 전체 융합율은 in vivo가 66.1%로서 in vitro의 52.8%보다는 유의적으로 높게 나타났다.