• 제목/요약/키워드: single-molecule detection

검색결과 33건 처리시간 0.024초

Detection and Manipulation of Spin state of Single Molecule Magnet: Kondo resonance and ESR-STM

  • Komeda, T.;Isshiki, H.;Zhang, Y.F.;Katoh, K.;Yoshida, Y.;Yamashita, M.;Miyasaka, H.;Breedlove, B.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.16-17
    • /
    • 2010
  • Molecular spintronics has attracted attentions, which combines molecular electronics with the spin degree of freedom in electron transport. Among various molecules as candidates of the molecular spintronics, single molecule magnet (SMM) is one of the most promising material. SMM molecules show a ferromagnetic behavior even as a single molecule and hold the spin information even after the magnetic field is turned off. Here in this report, we show the spin behavior of SMM molecules adsorbed on the Au surface by combining the observation of Kondo peak in the STS and ESR-STM measurement. Kondo resonance state is formed near the Fermi level when degenerated spin state interacts with conduction electrons. ESR-STM detects the Larmor frequency of the spin in the presence of a magnet field. The sample include $MPc_2$ and $M_2Pc_3$ molecules ($M\;=\;Tb^{3+}$, $Dy^{3+}$, and $Y^{3+}$ Pc=phthalocyanine) whose critical temperature as a ferromagnet reaches 40 K. A clear Kondo peak was observed which is originated from an unpaired electron in the ligand of the molecule, which is the first demonstration of the Kondo peak originated from electron observed in the STS measurement. We also observed corresponding peaks in ESR-STM spectra. [1] In addition we found that the Kondo peak intensity shows a clear variation with the conformational change of the molecule; namely the azimuthal rotational angle of the Pc planes. This indicates that the Kondo resonance is correlated with the molecule electronic state. We examined this phenomena by using STM manipulation technique, where pulse bias application can rotate the relative azimuthal angle of the Pc planes. The result indicates that an application of ~1V pulse to the bias voltage can rotate the Pc plane and the Kondo peaks shows a clear variation in intensity by the molecule's conformational change.

  • PDF

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권5호
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

나노포어 기반 나노바이어센서 기술 (Introduction to research and current trend about nanopore-based nanobiosensor)

  • 김주형;윤여안;이충만;유경화
    • 진공이야기
    • /
    • 제2권1호
    • /
    • pp.4-9
    • /
    • 2015
  • A nanopore is a very small hole that can be used as single-molecule detector. The detection principle is based on monitoring the ionic current reduced by passage of a molecule through the nanopore as a voltage is applied across the nanopore. Here, we introduce biological nanopores and solid-state nanopores. Then, research and current trend about nanopore-based DNA biosensor and protein analysis are reviewed.

Nanoscale-NMR with Nitrogen Vacancy center spins in diamond

  • Lee, Junghyun
    • 한국자기공명학회논문지
    • /
    • 제24권2호
    • /
    • pp.59-65
    • /
    • 2020
  • Nitrogen-Vacancy (NV) center in diamond has been an emerging versatile tool for quantum sensing applications. Amongst various applications, nano-scale nuclear magnetic resonance (NMR) using a single or ensemble NV centers has demonstrated promising results, opening possibility of a single molecule NMR for its chemical structural studies or multi-nuclear spin spectroscopy for quantum information science. However, there is a key challenge, which limited the spectral resolution of NMR detection using NV centers; the interrogation duration for NV-NMR detection technique has been limited by the NV sensor spin lifetime (T1 ~ 3ms), which is orders of magnitude shorter than the coherence times of nuclear spins in bulk liquid samples (T2 ~ 1s) or intrinsic 13C nuclear spins in diamond. Recent studies have shown that quantum memory technique or synchronized readout detection technique can further narrow down the spectral linewidth of NMR signal. In this short review paper, we overview basic concepts of nanoscale NMR using NV centers, and introduce further developments in high spectral resolution NV NMR studies.

Noble Metal Nanowire Based SERS Sensor

  • 강태준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.87-87
    • /
    • 2013
  • The interface between nanomaterials and biosystems is emerging as one of the broadest and most dynamic areas of science and technology, bringing together biology, chemistry, physics and many areas of engineering, biomedicine. The combination of these diverse areas of research promised to yield revolutionary advances in healthcare, medicine, and life science. For example, the creation of new and powerful nanosensors that enable direct, sensitive, and rapid analysis of biological and chemical species can advance the diagnosis and treatment of disease, discovery and screening of new drug molecules. Nanowire based sensors are emerging as a powerful and general platform for ultrasensitive and multiplex detection of biological and chemical species. Here, we present the studies about noble metal nanowire sensors that can be used for sensitive detection of a wide-range of biological and chemical species including nucleic acids, proteins, and toxic metal ions. Moreover, the optical and electrochemical applications of noble metal nanowires are introduced. Noble metal nanowires are successfully used as plasmonic antennas and nanoelectrodes, thereby provide a pathway for a single molecule sensor, in vivo neural recording, and molecular injection and detection in a single living cell.

  • PDF

One-dimensional Nanomaterials for Field Effect Transistor (FET) Type Biosensor Applications

  • Lee, Min-Gun;Lucero, Antonio;Kim, Ji-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권4호
    • /
    • pp.165-170
    • /
    • 2012
  • One-dimensional, nanomaterial field effect transistors (FET) are promising sensors for bio-molecule detection applications. In this paper, we review fabrication and characteristics of 1-D nanomaterial FET type biosensors. Materials such as single wall carbon nanotubes, Si nanowires, metal oxide nanowires and nanotubes, and conducting polymer nanowires have been widely investigated for biosensors, because of their high sensitivity to bio-substances, with some capable of detecting a single biomolecule. In particular, we focus on three important aspects of biosensors: alignment of nanomaterials for biosensors, surface modification of the nanostructures, and electrical detection mechanism of the 1-D nanomaterial sensors.