DOI QR코드

DOI QR Code

One-dimensional Nanomaterials for Field Effect Transistor (FET) Type Biosensor Applications

  • Lee, Min-Gun (Department of Material Science and Engineering, University of Texas at Dallas) ;
  • Lucero, Antonio (Department of Material Science and Engineering, University of Texas at Dallas) ;
  • Kim, Ji-Young (Department of Material Science and Engineering, University of Texas at Dallas)
  • Published : 2012.08.25

Abstract

One-dimensional, nanomaterial field effect transistors (FET) are promising sensors for bio-molecule detection applications. In this paper, we review fabrication and characteristics of 1-D nanomaterial FET type biosensors. Materials such as single wall carbon nanotubes, Si nanowires, metal oxide nanowires and nanotubes, and conducting polymer nanowires have been widely investigated for biosensors, because of their high sensitivity to bio-substances, with some capable of detecting a single biomolecule. In particular, we focus on three important aspects of biosensors: alignment of nanomaterials for biosensors, surface modification of the nanostructures, and electrical detection mechanism of the 1-D nanomaterial sensors.

Keywords

References

  1. A. N. Shipway, E. Katz and I. Willner, ChemPhysChem 1 (1), 18-52 (2000) [DOI: 10.1002/1439-7641(20000804)1:1<18::AIDCPHC18> 3.0.CO;2-L].
  2. H. Shu-Jen, X. Liang, Y. Heng, R. J. Wilson, R. L. White, N. Pourmand and S. X. Wang, Proceedings of 2006 IEDM (2006) 1-4 [DOI: 10.1109/IEDM.2006.346887].
  3. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, Solar Energy Materials and Solar Cells 90 (14), 2011- 2075 (2006) [DOI: 10.1016/j.solmat.2006.04.007].
  4. N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian and D. L. Kwong, IEEE Electron Device Letters 27 (5), 383-386 (2006)[DOI: 10.1109/led.2006.873381].
  5. Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka and R. S. Williams, Nano Letters 4 (2), 245-247 (2004) [DOI: 10.1021/nl034958e].
  6. K. Chen, B. Li and Y. Chen, Nano Today 6 (2), 131-154 (2011) [DOI: 10.1016/j.nantod.2011.02.001].
  7. K. Maehashi, K. Matsumoto, Y. Takamura and E. Tamiya, Electroanalysis 21 (11), 1285-1290 (2009) [DOI: 10.1002/elan.200804552].
  8. K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering and C. Dekker, Nano Letters 3 (6), 727-730 (2003) [DOI: 10.1021/nl034139u].
  9. P. Yeh, Z. Li and Z. L. Wang, Advanced Materials (48), 4975-4978 (2009) [DOI: 10.1002/adma.200902172].
  10. D. Cha, M. Lee, H. Shin, M. Kim and J. Kim, Microscopy and Microanalysis 15 (SupplementS2), 1180-1181 (2009) [DOI: 10.1017/S1431927609096949].
  11. R. Doong and H. Shih, Biosensors and Bioelectronics 25 (6), 1439-1446 (2010) [DOI: 10.1016/j.bios.2009.10.044].
  12. M. Curreli, C. Li, Y. Sun, B. Lei, M. A. Gundersen, M. E. Thompson and C. Zhou, Journal of the American Chemical Society 127 (19), 6922-6923 (2005) [DOI: 10.1021/ja0503478].
  13. D. J. Shirale, M. A. Bangar, W. Chen, N. V. Myung and A. Mulchandani, The Journal of Physical Chemistry C 114 (31), 13375-13380 (2010) [DOI: 10.1021/jp104377e].
  14. P. Bergveld, IEEE Transactions on Biomedical Engineering BME-19 (5), 342-351 (1972) [DOI: 10.1109/TBME.1972.324137].
  15. S. Caras and J. Janata, Analytical Chemistry 52 (12), 1935-1937 (1980) [DOI: 10.1021/ac50062a035].
  16. C. Po-Chiang, N. I. Fumiaki, C. Hsiao-Kang, R. Koungmin and Z. Chongwu, Nanotechnology 20 (12), 125503 (2009) [DOI: 10.1088/0957-4484/20/12/125503].
  17. A. Star, J.-C. P. Gabriel, K. Bradley and G. Gruner, Nano Letters 3 (4), 459-463 (2003) [DOI: 10.1021/nl0340172].
  18. Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science 293 (5533), 1289-1292 (2001) [DOI: 10.1126/science.1062711].
  19. M. Wan, Advanced Materials 20 (15), 2926-2932 (2008) [DOI: 10.1002/adma.200800466].
  20. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dai, Science 287 (5453), 622-625 (2000) [DOI: 10.1126/science.287.5453.622].
  21. Y. Cheng, P. Xiong, C. S. Yun, G. F. Strouse, J. P. Zheng, R. S. Yang and Z. L. Wang, Nano Letters 8 (12), 4179-4184 (2008) [DOI: 10.1021/nl801696b].
  22. S. Saha, S. K. Arya, S. P. Singh, K. Sreenivas, B. D. Malhotra and V. Gupta, Biosensors and Bioelectronics 24 (7), 2040-2045 (2009) [DOI: 10.1016/j.bios.2008.10.032].
  23. E. S. Forzani, X. Li, P. Zhang, N. Tao, R. Zhang, I. Amlani, R. Tsui and L. A. Nagahara, Small 2 (11), 1283-1291 (2006) [DOI: 10.1002/smll.200600185].
  24. K. Bradley, M. Briman, A. Star and G. Grüner, Nano Letters 4 (2), 253-256 (2004) [DOI: 10.1021/nl0349855].
  25. P. R. Nair and M. A. Alam, Nano Letters 8 (5), 1281-1285 (2008) [DOI: 10.1021/nl072593i].
  26. X. Gao, G. Zheng and C. M. Lieber, Nano Letters 10 (2), 547-552 (2009) [DOI: 10.1021/nl9034219].
  27. Z. Chen, Y. Yang, F. Chen, Q. Qing, Z. Wu and Z. Liu, The Journal of Physical Chemistry B 109 (23), 11420-11423 (2005) [DOI: 10.1021/jp051848i].
  28. O. Englander, D. Christensen, J. Kim, L. Lin and S. J. S. Morris, Nano Letters 5 (4), 705-708 (2005) [DOI: 10.1021/nl050109a].
  29. M. Sung., M. Lee, K. Gyu Tae, J. S. Ha and S. Hong, Advanced Materials 17 (19), 2361-2364 (2005) [DOI: 10.1002/adma.200500682].
  30. M. Sung, K. Heo, M. Lee, Y.-H. Choi, S.-H. Hong and S. Hong, Nanotechnology 18 (20), 205304 (2007) [DOI: 10.1088/0957-484/18/20/205304].
  31. K. Juwan, M. Sung, K. Byeongju, O. Dongjin, K. Gyu Tae and H. Seunghun, Nanotechnology 19 (9), 095303 (2008) [DOI:10.1088/0957-4484/19/9/095303].
  32. M. C. McAlpine, H. Ahmad, D. Wang and J. R. Heath, Nat. Mater. 6 (5), 379-384 (2007) [DOI: 10.1038/nmat1891].
  33. M. Lee, J. Huang, A. Lucero, M. J. Kim and J. Kim, Proceedings of 2011 IEEE Nanotechnology Materials and Devices Conference (2011) 143-146.
  34. H. H. Lamb, B. C. Gates and H. Knozinger, Angewandte Chemie International Edition 27 (9), 1127-1144 (1988) [DOI: 10.1002/anie.198811271].
  35. K. Kakiage, T. Kyomen, M. Unno and M. Hanaya, SILICON 1 (3), 191-197 (2009) [DOI:10.1007/s12633-009-9027-x].
  36. B. Zhang, T. Kong, W. Xu, R. Su, Y. Gao and G. Cheng, Langmuir 26 (6), 4514-4522 (2010) [DOI: 10.1021/la9042827].
  37. L. Aihua, Biosensors and Bioelectronics 24 (2), 167-177 (2008) [DOI: 10.1016/j.bios.2008.04.014].
  38. B. K. Teo and X. H. Sun, Chemical Reviews 107 (5), 1454-1532 (2007) [DOI: 10.1021/cr030187n].
  39. G. Zheng, X. Gao and C. M. Lieber, Nano Letters 10 (8), 3179-3183 (2010) [DOI:10.1021/nl1020975].
  40. N. A. Lapin and Y. J. Chabal, The Journal of Physical Chemistry B 113 (25), 8776-8783 (2009) [DOI: 10.1021/jp809096m].
  41. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang and C. M. Lieber, Proceedings of the National Academy of Sciences of the United States of America 101 (39), 14017-14022 (2004) [DOI: 10.1016/j.snb.2010.04.049].
  42. A. Choi, K. Kim, H. I. Jung and S. Y. Lee, Sensors and Actuators B: Chemical 148 (2), 577-582 (2010) [DOI: 10.1021/jp809096m].
  43. C. D. Corso, A. Dickherber and W. D. Hunt, Biosensors and Bioelectronics 24 (4), 805-811 (2008) [DOI: 10.1016/j.bios.2008.07.011].
  44. M. Curreli, Z. Rui, F. N. Ishikawa, C. Hsiao-Kang, R. J. Cote, Z. Chongwu and M. E. Thompson, IEEE Transactions on Nanotechnology 7 (6), 651-667 (2008) [DOI :10.1088/0957-4484/20/12/125503].
  45. S. J. Tans, A. R. M. Verschueren and C. Dekker, Nature 393 (6680), 49-52 (1998) [DOI: 10.1038/29954].
  46. J. Wang, G. Liu and M. R. Jan, Journal of the American Chemical Society 126 (10), 3010-3011 (2004) [DOI: 10.1021/ja031723w].
  47. T. Nguyen, F.-X. Simon, M. Schmutz and P. J. Mesini, Chemical Communications, 45, (23), 3457-3459 (2009) [DOI: : 10.1039/B903797G].
  48. K. Ramanathan, M. A. Bangar, M. Yun, W. Chen, N. V. Myung and A. Mulchandani, Journal of the American Chemical Society 127 (2), 496-497 (2004) [DOI: 10.1021/ja044486l].
  49. S. Boussaad, N. J. Tao, R. Zhang, T. Hopson and L. A. Nagahara, Chemical Communications, 39, (13), 1502-1503 (2003) [DOI: 10.1039/B302681G].
  50. E. S. Forzani, H. Zhang, L. A. Nagahara, I. Amlani, R. Tsui and N. Tao, Nano Letters 4 (9), 1785-1788 (2004) [DOI: 10.1021/nl049080l].
  51. M. Singh, P. K. Kathuroju and N. Jampana, Sensors and Actuators B: Chemical 143 (1), 430-443 (2009) [DOI: 10.1016/j.snb.2009.09.005].
  52. J. K. Shin, D. S. Kim, H. J. Park and G. Lim, Electroanalysis 16 (22), 1912-1918 (2004) [DOI: 10.1002/elan.200403080].
  53. C. Li, M. Curreli, H. Lin, B. Lei, F. N. Ishikawa, R. Datar, R. J. Cote, M. E. Thompson and C. Zhou, Journal of the American Chemical Society 127 (36), 12484-12485 (2005) [DOI: 10.1021/ja053761g].
  54. G. Gruner, Analytical and Bioanalytical Chemistry 384 (2), 322-335 (2006) [DOI: 10.1007/s00216-005-3400-4].
  55. D. S. Hecht, R. J. A. Ramirez, M. Briman, E. Artukovic, K. S. Chichak, J. F. Stoddart and G. Gruner, Nano Letters 6 (9), 2031-2036 (2006) [DOI: 10.1021/nl061231s].
  56. R. J. Chen, H. C. Choi, S. Bangsaruntip, E. Yenilmez, X. Tang, Q. Wang, Y.-L. Chang and H. Dai, Journal of the American Chemical Society 126 (5), 1563-1568 (2004) [DOI: 10.1021/ja038702m].
  57. I. Heller, A. M. Janssens, J. Mannik, E. D. Minot, S. G. Lemay and C. Dekker, Nano Letters 8 (2), 591-595 (2007) [DOI: 10.1021/nl072996i].

Cited by

  1. Conducting Polymer Nanomaterials for Biomedical Applications: Cellular Interfacing and Biosensing vol.53, pp.3, 2013, https://doi.org/10.1080/15583724.2013.805771
  2. Fabrication of single TiO2nanotube devices with Pt interconnections using electron- and ion-beam-assisted deposition vol.55, pp.6S1, 2016, https://doi.org/10.7567/JJAP.55.06GG11
  3. Liquid and Back Gate Coupling Effect: Toward Biosensing with Lowest Detection Limit vol.14, pp.2, 2014, https://doi.org/10.1021/nl403748x
  4. Terms of endearment: Bacteria meet graphene nanosurfaces vol.89, 2016, https://doi.org/10.1016/j.biomaterials.2016.02.030