• Title/Summary/Keyword: single-molecular guide RNA

Search Result 5, Processing Time 0.024 seconds

Single-molecule fluorescence measurements reveal the reaction mechanisms of the core-RISC, composed of human Argonaute 2 and a guide RNA

  • Jo, Myung Hyun;Song, Ji-Joon;Hohng, Sungchul
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.643-644
    • /
    • 2015
  • In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection.

Determination of the Length of Target Recognition Sequence in sgRNA Required for CRISPR Interference (CRISPR 간섭에 필요한 sgRNA 표적 인식 서열 길이의 결정)

  • Kim, Bumjoon;Kim, Byeong Chan;Lee, Ho Joung;Lee, Sang Jun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.534-542
    • /
    • 2021
  • Single-molecular guide RNA (sgRNA) plays a role in recognizing the DNA target sequence in CRISPR technology for genome editing and gene expression control. In this study, we systematically compared the length of the target recognition sequence in sgRNAs required for genome editing using Cas9-NG (an engineered Cas9 recognizing 5'-NG as PAM sequence) and gene expression control using deactivated Cas9-NG (dCas9-NG) by targeting the gal promoter in E. coli. In the case of genome editing, the truncation of three nucleotides in the target recognition sequence (TRS) of sgRNA was allowed. In gene expression regulation, we observed that target recognition and binding were possible even if eleven nucleotides were deleted from twenty nucleotides of the TRS. When 4 or more nucleotides are truncated in the TRS of the sgRNA, it is thought that the sgRNA/Cas9-NG complex can specifically bind to the target DNA sequence, but lacks endonuclease activity to perform genome editing. Our study will be helpful in the development of artificial transcription factors and various CRISPR technologies in the field of synthetic biology.

Development of CRISPR technology for precise single-base genome editing: a brief review

  • Lee, Hyomin K.;Oh, Yeounsun;Hong, Juyoung;Lee, Seung Hwan;Hur, Junho K.
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.

Generation of ints14 Knockout Zebrafish using CRISPR/Cas9 for the Study of Development and Disease Mechanisms

  • Ji Hye Jung;Sanghoon Jeon;Heabin Kim;Seung-Hyun Jung
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.205-211
    • /
    • 2023
  • INTS14/VWA9, a component of the integrator complex subunits, plays a pivotal role in regulating the fate of numerous nascent RNAs transcribed by RNA polymerase II, particularly in the biogenesis of small nuclear RNAs and enhancer RNAs. Despite its significance, a comprehensive mutation model for developmental research has been lacking. To address this gap, we aimed to investigate the expression patterns of INTS14 during zebrafish embryonic development. We generated ints14 mutant strains using the CRISPR/Cas9 system. We validated the gRNA activity by co-injecting Cas9 protein and a single guide RNA into fertilized zebrafish eggs, subsequently confirming the presence of a 6- or 9-bp deletion in the ints14 gene. In addition, we examined the two mutant alleles through PCR analysis, T7E1 assay, TA-cloning, and sequencing. For the first time, we used the CRISPR/Cas9 system to create a model in which some sequences of the ints14 gene were removed. This breakthrough opens new avenues for in-depth exploration of the role of ints14 in animal diseases. The mutant strains generated in this study can provide a valuable resource for further investigations into the specific consequences of ints14 gene deletion during zebrafish development. This research establishes a foundation for future studies exploring the molecular mechanisms underlying the functions of ints14, its interactions with other genes or proteins, and its broader implications for biological processes.

Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng

  • Choi, Han Suk;Koo, Hyo Bin;Jeon, Sung Won;Han, Jung Yeon;Kim, Joung Sug;Jun, Kyong Mi;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.505-514
    • /
    • 2022
  • Background: The roots of Panax ginseng contain two types of tetracyclic triterpenoid saponins, namely, protopanaxadiol (PPD)-type saponins and protopanaxatiol (PPT)-type saponins. In P. ginseng, the protopanaxadiol 6-hydroxylase (PPT synthase) enzyme catalyses protopanaxatriol (PPT) production from protopanaxadiol (PPD). In this study, we constructed homozygous mutant lines of ginseng by CRISPR/Cas9-mediated mutagenesis of the PPT synthase gene and obtained the mutant ginseng root lines having complete depletion of the PPT-type ginsenosides. Methods: Two sgRNAs (single guide RNAs) were designed for target mutations in the exon sequences of the two PPT synthase genes (both PPTa and PPTg sequences) with the CRISPR/Cas9 system. Transgenic ginseng roots were generated through Agrobacterium-mediated transformation. The mutant lines were screened by ginsenoside analysis and DNA sequencing. Result: Ginsenoside analysis revealed the complete depletion of PPT-type ginsenosides in three putative mutant lines (Cr4, Cr7, and Cr14). The reduction of PPT-type ginsenosides in mutant lines led to increased accumulation of PPD-type ginsenosides. The gene editing in the selected mutant lines was confirmed by targeted deep sequencing. Conclusion: We have established the genome editing protocol by CRISPR/Cas9 system in P. ginseng and demonstrated the mutated roots producing only PPD-type ginsenosides by depleting PPT-type ginsenosides. Because the pharmacological activity of PPD-group ginsenosides is significantly different from that of PPT-group ginsenosides, the new type of ginseng mutant producing only PPD-group ginsenosides may have new pharmacological characteristics compared to wild-type ginseng. This is the first report to generate target-induced mutations for the modification of saponin biosynthesis in Panax species using CRISPR-Cas9 system.