• Title/Summary/Keyword: single-gas permeation

Search Result 56, Processing Time 0.024 seconds

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Gas Permeation Characteristics by Pebax/ZIF-9 Mixed Matrix Membrane (Pebax/ZIF-9 혼합막에 의한 기체투과 특성)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.325-335
    • /
    • 2022
  • In this study, zeolitic imidazolate framework-9 (ZIF-9) was synthesized and Pebax/ZIF-9 mixed membranes were prepared by varying the content in poly(ether-b-amide)-1657 (Pebax-1657), and then a single gas (N2, CO2) was permeated to investigate the gas permeation characteristics of the mixed membrane. As the ZIF-9 content incorporated into the pure Pebax membrane increased, the N2 permeability gradually decreased, and the CO2 permeability increased up to the Pebax/ZIF-9 3 wt% mixed membrane, and then decreased at the content thereafter. And among the mixed membranes, the Pebax/ZIF-9 3 wt% mixed membrane showed the highest selectivity of 69.3 by selectively accepting CO2 as the gate-opening phenomenon occurred for the polar gas, CO2. In addition, both the CO2 permeability and the CO2/N2 selectivity increased, resulting in the closest Robeson upper-bound.

Ceramic barrier coated Pd hydrogen membrane on a porous nickel support (수소 분리용 팔라듐계 분리막의 세라믹 코팅 영향)

  • Lee, Chun-Boo;Lee, Sung-Wook;Park, Jin-Woo;Kim, Kwang-Ho;Hwang, Kyung-Ran;Park, Jong-Soo;Kim, Sung-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.114.1-114.1
    • /
    • 2010
  • A highly performed Pd-based hydrogen membrane has prepared successfully on a modified porous nickel support. The porous nickel support modified by impregnation method of $Al(NO_3)_3{\cdot}9H_2O$ (Aldrich Co.) over the nickel powder showed a strong resistance to hydrogen embrittlement and thermal stability. Plasma surface modification treatment was introduced as a pre-treatment process instead of conventional HCl wet activation. Ceramic barrier was coated on the external surface of the prepared nickel supports to prevent intermetallic diffusion and to enhance the affinity between the support and membrane. Palladium and copper were deposited at thicknesses of $4\mu}m$ and $0.5{\mu}m$, respectively, on a barrier-coated support by DC sputtering process. The permeation measurement was performed in pure hydrogen at $400^{\circ}C$. The single gas permeation of our membrane was two times higher than that of the previous membrane which do not have ceramic barrier.

  • PDF

Hydrogen Production Using Membrane Reactors

  • Giuseppe Barbieri;Paola Bernardo;Enrico Drioli;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.68-74
    • /
    • 2003
  • Methane steam reforming (MSR) reaction for hydrogen production was studied in a membrane reactor (MR) using two tubular membranes, one Pd-based and one of porous alumina. A higher methane conversion than the thermodynamic equilibrium for a traditional reactor (TR) was achieved using MRs. The experimental temperature range was 350-500$^{\circ}C$; no sweep-gas was employed during reaction tests to avoid its back-permeation through the membrane and the steam/methane molar feed ratio (m) varied in the range 3.5-5.9. The best results (the difference between the MR conversion and the thermodynamic equilibrium was of about 7%) were achieved with the alumina membrane, working with the highest steam/methane ratio and at 450$^{\circ}C$. Silica membranes prepared at KRICT laboratories were characterized with permeation tests on single gases (N$_2$, H$_2$ and CH$_4$). These membranes are suited for H$_2$ separation at high temperature.

Variation of Single Gas ($SF_6$, $N_2$, $O_2$, $CF_4$) Permeance through Hollow Fiber Polymeric Membranes Depending on Temperature and Pressure (중공사 고분자 분리막을 통한 단일기체($SF_6$, $N_2$, $O_2$, $CF_4$) 투과플럭스의 온도와 압력에 따른 변화특성)

  • Lee, Min-Woo;Lee, Soon-Jae;Kim, Han-Byul;Kim, Sung-Hyun;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2012
  • In this study, we investigated the permeation property of single gases ($N_2$, $O_2$, $SF_6$, $CF_4$ through hollow fiber polymeric membrane (PSF, PC, PI) as a function of pressure and temperature to decide operating condition for $SF_6$ gas separation process. The results showed the gas permeation varied differentlydepending on the properties of gases and membrane. When permeance of each gases was represented as a function of temperature and pressure in 3 dimensional space, the surface of permeance was shown approximately flat. Thus, we established permeance models with forms of first-and second-order polynomial. These two models showed high goodness of fit. This indicates that the two polynomial models have enough applicability to predict the gas separation process.

Preparation and Oxygen Permeability of Nb-doped BCFN Ceramic Membrane (Nb-doped BCFN 세라믹 막의 제조 및 산소투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • $BaCo_{0.7}Fe_{0.22}Nb_{0.08}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1,200^{\circ}C$. XRD result of membrane showed single perovskite structure. Leakage and oxygen permeation test were conducted on the membrane sealed by glass ring as a sealing material. The oxygen permeation flux increased with increasing temperature and pressure difference and maximum oxygen permeation flux was $2.3mL/min{\cdot}cm^2$ at $950^{\circ}C$ with $Po_2$ = 0.63 atm of oxygen partial pressure. The oxygen permeation in the condition of air with $CO_2$ (300 ppm) as feed stream decreased as much as only maximum 2.9% in comparison with air feed stream. It indicated $BaCo_{0.7}Fe_{0.22}Nb_{0.08}O_{3-{\delta}}$ membrane is more stable than another membrane for carbon dioxide.

Fabrication and Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes for Oxygen Separation (산소분리를 위한 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막 제조 및 투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.804-809
    • /
    • 2011
  • Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes were prepared by extrusion. TGA results of green body membrane after extrusion showed three successive weight losses due to decomposition of organic additives and carbonate. Drying shrinkage rate of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes was no change after 68 h and higher in the membrane with large outer diameter. XRD and SEM results showed the sintered membranes were the single phase structure and dense. The stoichiometric molar ratio agreed well with composition ratio calculated by EDS results for $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane. Radial crushing strength of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane with 0.95 mm thickness was 5.7 kgf/$mm^2$ and the oxygen permeation rate of same membrane was 146.85 mL/min ($Jo_2$=2.33 mL/$min{\cdot}cm^2$) at $950^{\circ}C$. Therefore, it was known that use of vacuum pump was more effective than that of sweep gas to obtain higher oxygen permeation flux.

The Permeation Properties of $O_{2}\;and\;N_{2}$ for BPSf/TMSPSf Blend Membrane (BPSf/TMSSf 블렌드막을 통한 산소와 질소의 투과특성)

  • Kim Hyunjoon;Hong Suk-In
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • The permeation properties of $O_2\;and\;N_2$ were measured for bromobisphenol A polysulfone(BPSf), bisphenol A trimethylsilylated polysulfone(TMSPSf) and their blend membrane to investigate the structure-properties relationships. BPSf shows relatively high permselectivity. It can be explained that the strong polarity of bromine in BPSf increases chain packing ability. In this case the distance of polymer chains is reduced by increasing of interchain interaction by induced dipole. TMSPSf shows relatively high permeability. The higher value of permeability coefficients for TMSPSf is due to the substitution of very bulky trimethylsilyl groups. The replacement of phenyl hydrogens of bisphenol A polysulfone(PSf) with trimethylsilyl groups results in higher fractional free volume(FFV). In this work, taking into account the complimentary features of BPSf and TMSPSf, BPSf/TMSPSf blend was prepared and the compatibility in mixing are examined. The BPSf/TMSPSf blend shows higher permeability than commercial PSf, with minimum loss of selectivity. The miscibility of the BPSf/TMSPSf blend is confirmed by the single glass transition temperature.

  • PDF

Studies on the $N_2/SF_6$ Permeation Behaviors Using the Polyethersulfone Hollow Fiber Membranes (폴리이서설폰 중공사 막을 이용한 $N_2/SF_6$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;Kim, Dae-Hoon;An, Young-Mo;Jo, Hang-Dae;Park, Jong-Soo
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.244-251
    • /
    • 2009
  • In this research the polyethersulfone hollow fiber membrane was used to separate Sulfur Hexafluoride ($SF_6$) which is the one of the six greenhouse gases from Air ($N_2$). The effects of the non-solvent (Acetone, Ethanol) type, air-gap and post-treatment (surface silicon coating) were investigated by the structure and performance of the membranes. The structure change of the membrane was examined by scanning electron microscope. The single gas permeation using $N_2$, $SF_6$ through the membrane surface coated with silicon showed maximum 7.64 perm-selectivity improved 3.4 times.

Study of Oxygen Barrier Properties of Silk Fibroin Composite Membrane Using Molecular Dynamics Simulation (분자동역학 전산모사를 활용한 실크 피브로인 복합막의 산소 차단성 연구)

  • Young Jin Seo;Na Yeong Kwon;Chi Hoon Park
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.447-453
    • /
    • 2023
  • The performance of computer systems and the development of various computer simulation programs have made it possible to analyze chemical systems composed of more complex elements, and accordingly, research using molecular dynamics simulation is being actively conducted. Research on calculating the gas permeation characteristics of polymer membranes by molecular dynamics, which was previously conducted mainly through experiments, is receiving attention for gas barrier membranes used in food packaging and pharmaceuticals. Recently, there has been a report that a gas barrier effect appears when a coating film is made using silk fibroin, and in this study, a study was conducted using molecular dynamics simulation to confirm whether an oxygen barrier effect appears when a composite film is made using silk fibroin. We built a single model, calculated the gas permeation characteristics, and compared it with the experimental value to confirm that the model reflects the actual experimental results. Actual composite membrane models were then built and the gas movement path within the polymer was analyzed. As a result, oxygen molecules were found that they could not pass through and was blocked in the fibroin region. Therefore, the composite membrane with silk fibroin has excellent oxygen barrier property and is expected to be useful in food packaging, etc.