• Title/Summary/Keyword: single-cathode

Search Result 224, Processing Time 0.027 seconds

Electricity Production Performance of Single- and Dual-cathode Microbial Fuel Cells Coupled to Carbon Source and Nitrate (Single-cathode와 Dual-cathode 미생물연료전지의 탄소원과 질산성질소의 전류발생 특성)

  • Jang, Jae-Kyung;Lee, Eun-Young;Ryou, Young-Sun;Lee, Sung-Hyoun;Hwang, Ji-Hwan;Lee, Hyung-Mo;Kim, Jong-Goo;Kang, Youn-Koo;Kim, Young-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.382-386
    • /
    • 2011
  • Microbial fuel cells (MFC), devices that use bacteria as a catalyst to generate electricity, can utilize a variety of organic wastes as electron donors. The current generated may differ depending on the organic matter concentrations used, when other conditions, such as oxidant supply, proton transfer, internal resistance and so on, are not limiting factors. In these studies, a single-cathode type MFC (SCMFC) and dual-cathode type MFC (DCMFC) were used to ascertain the current's improvement through an increase in the contact area between the anode and the cathode compartments, because the cathode reaction is one of the most serious limiting factors in an MFC. Also an MFC was conducted to explore whether an improvement in electricity generation resulted from oxidizing the carbon sources and nitrates. About 250 mg $L^{-1}$ sodium acetate was fed to an anode compartment with a flow rate of 0.326 mL $min^{-1}$ by continuous mode. The current generated from the DCMFC was higher than the value produced from MFC with a single cathode. COD removal of dual-cathode MFC was also higher than that of single-cathode MFC. The nitrate didn't affect current generation at 2 mM, but when 4 and 8 mM nitrate was supplied, the current in the single-cathode and dual-cathode MFC was decreased by 98% from $5.97{\pm}0.13$ to $0.23{\pm}0.03$ mA and $8.40{\pm}0.23$ to $0.20{\pm}0.01$ mA, respectively. These results demonstrate that increasing of contact area of the anode and cathode can raise current generation by an improvement in the cathode reaction.

Characterization and Electrochemical Performance of Composite BSCF Cathode for Intermediate-temperature Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Kim-Lohsoontorn, Pattaraporn;Bae, Joong-Myeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • The composite barium strontium cobalt ferrite (BSCF) cathodes were investigated in the intermediate temperature range of solid oxide fuel cells (SOFCs). The characteristics and electrochemical performances of composited BSCF/samarium doped ceria (SDC); BSCF/gadolinium doped ceria (GDC); and BSCF/SDC/GDC were compared to single BSCF cathode. The BSCF used in this study were synthesized using glycine nitrate process and mechanically mixing was used to fabricate a composite cathode. Using a composite form, the thermal expansion coefficient (TEC) could be reduced and BSCF/SDC/GDC exhibited the lowest TEC value at $18.95{\times}10^{-6}K^{-1}$. The electrochemical performance from half cells and single cells exhibited nearly the same trend. All the composite cathodes gave higher electrochemical performance than the single BSCF cathode (0.22 $Wcm^{-2}$); however, when two kinds of electrolyte were used (BSCF/SDC/GDC, 0.36$Wcm^{-2}$), the electrochemical performance was lower than when the BSCF/SDC (0.45 $Wcm^{-2}$) or BSCF/GDC (0.45 $Wcm^{-2}$) was applied as cathode ($650^{\circ}C$, 97%$H_2$/3%$H_2O$ to the anode and ambient air to the cathode).

Fabrication of Anode-Supported SOFC Single Cells via Tape-Casting of Thin Tapes and Co-Firing (박막 테이프캐스팅과 동시소성에 의한 연료극 지지형 SOFC 단전지 제조)

  • Moon, Hwan;Kim, Sun-Dong;Hyun, Sang-Hoon;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.788-797
    • /
    • 2006
  • An anode-supported SOFC single cell having $5{\mu}m$ thin electrolyte was fabricated cost-effectively by tape casting, laminating, and co-filing of anode (NiO-YSZ), cathode (LSM-YSZ), and electrolyte (YSZ) components. The optimal slurry compositions of the green tapes for SOFC components were determined by an analysis of the mean diameter, the slurry viscosity, the tensile strength/strain of the green tapes, and their green microstructures. The single cells with a dense electrolyte and porous electrodes could be co-fired successfully at $1325\sim1350^{\circ}C$ by controlling the contents of pore former and the ratio of coarse YSZ and fine YSZ in the anode and the cathode. The single cell co-fired at $1350^{\circ}C$ showed $100.2mWcm^{-2}$ of maximum power density at $800^{\circ}C$ but it was impossible to apply it to operate at low temperature because of low performance and high ASR, which were attributed to formation of the secondary phases in the cathode and the interface between the electrolyte and the cathode.

Performance of the PEMFC for the mobile devices according to cathode (Cathode에 따른 휴대용 PEM 연료전지의 성능 변화)

  • Lee, Se-Won;Lee, Kang-In;Park, Min-Soo;Chu, Chong-Nam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.550-553
    • /
    • 2008
  • In this paper, experiments of air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to the cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single cell and 6-cell stack were used in this experiments. The experimental results showed that the open type cathode flow field plate gave better performance for small size PEMFCs because the open type cathode plate allowed better air convection than the channel type cathode plate. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical slit cell. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, PEMFC generated more stable power in the mass transport loss region.

  • PDF

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

Effect of Double Grid Cathode in IEC Device (IEC 장치에서 이중 그리드 음극의 영향)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hui-Dong;Park, Jeong-Ho;Choi, Seung-Kil;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.724-729
    • /
    • 2010
  • We have proposed a new configuration on the cathode structure to improve a neutron yield without the application of external ion sources in an inertial electrostatic confinement (IEC) device. A neutron yield in the IEC device is closely related to the potential well structure generated inside the cathode and is proportional to the ion current. Therefore, the application of a double grid cathode structure to the IEC device is expected to produce a higher ion current and neutron yield than at a single grid cathode due to a high electric field strength generated around the cathode. These possibilities were verified as compared with the ion current calculated from both shape of the single and double grid cathode. Additionally from the results of ion's lives and trajectories examined at various outer cathode voltages and grid cathode configurations by using particle simulations, the validity of the double grid cathode was confirmed.

Electrochemical Catalytic Behavior of Cu2O Catalyst for Oxygen Reduction Reaction in Molten Carbonate Fuel Cells

  • Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Han, Jonghee;Yoon, Sung Pil;Kang, Min-Goo;Jang, Seong-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • To enhance the performance of cathodes at low temperatures, a Cu-coated cathode is prepared, and its electrochemical performance is examined by testing its use in a single cell. At $620^{\circ}C$ and a current density of $150mAcm^{-2}$, a single cell containing the Cu-coated cathode has a significantly higher voltage (0.87 V) during the initial operation than does that with an uncoated cathode (0.79 V). According to EIS analysis, the high voltage of the cell with the Cu-coated cathode is due to the dramatic decrease in the high-frequency resistance related to electrochemical reactions. From XPS analysis, it is confirmed that the Cu is initially in the form of $Cu_2O$ and is converted into CuO after 150 h of operation, without any change in the state of the Ni or Li. Therefore, the high initial cell voltage is confirmed to be due to $Cu_2O$. Because $Cu_2O$ is catalytically active toward $O_2$ adsorption and dissociation, $Cu_2O$ on a NiO cathode enhances cell performance and reduces cathode polarization. However, the cell with the Cu-coated cathode does not maintain its high voltage because $Cu_2O$ is oxidized to CuO, which demonstrates similar catalytic activity toward $O_2$ as NiO.

Laterally Encapsulated Cathode Structure for DC Plasma Display Panels

  • Esfahani, M.Mokhlespour;Mohajerzadeh, S.;Goodarzi, A.;Rouhi, N.;Tarighat, R.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1233-1236
    • /
    • 2005
  • We report a novel approach for encapsulating of cathode electrodes in DC plasma pixels. Anode and cathode electrodes are laterally placed on a single substrate. The encapsulated electrode minimizes the sputtering of the cathode without significantly altering the turn-on voltage-pressure characteristics. An abnormal glow in current-voltage characteristics is also observed.

  • PDF

Simplified Process for Passive Matrix OLEDs

  • Lee, Seung-Jun;Sin, Yun-Su;Im, Dae-U;Yu, Jae-Hun;Choe, Gyeong-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.397-398
    • /
    • 2008
  • We have developed simplified processes for the formation of insulators, cathode separators and bus electrodes in PMOLEDs. The insulators and cathode separators are patterned simultaneously by a single layer of image reversal photoresist. And, the bus electrodes of low resistance are formed by the cathode separator and cathode metal. Using these simplified processes, we fabricated 1.17" $96{\times}RGB{\times}96$ panels and analyzed their performance and reliability.

  • PDF

Fabrication of Co-Planar Type Single Chamber SOFC with Patterned Electrodes (패턴된 전극을 가진 표면 전도형 단실형 고체산화물 연료전지의 제조)

  • Ahn, Sung-Jin;Kim, Yong-Bum;Moon, Joo-Ho;Lee, Jong-Ho;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.798-804
    • /
    • 2006
  • Co-planar type single chamber solid oxide fuel cell with patterned electrode on a surface of electrolyte has been fabricated by robo-dispensing method and microfluidic lithography. The cells were composed of NiO-GDC-Pd or NiO-SDC cermet anode, $(La_{0.7}Sr_{0.3})_{0.95}MnO_3$ cathode, and yttria stablized zirconia electrolyte. The cell performance at $900^{\circ}C$ was investigated as a function of electrode geometries, such as anode-to-cathode distance, numbers of electrode pairs. Relationship between OCV and I-V characteristics at the optimized operation condition was also studied by DC source meter under the mixed gas condition of methane, air, and nitrogen. An increase of anode-facing-cathode area leads to lower OCV due to intermixing between product gases of anode and cathode, which in turn decreases the oxygen partial pressure difference.