DOI QR코드

DOI QR Code

Characterization and Electrochemical Performance of Composite BSCF Cathode for Intermediate-temperature Solid Oxide Fuel Cell

  • Kim, Yu-Mi (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim-Lohsoontorn, Pattaraporn (Department of Chemical Engineering, Mahidol University) ;
  • Bae, Joong-Myeon (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2011.01.31
  • Accepted : 2011.02.14
  • Published : 2011.03.31

Abstract

The composite barium strontium cobalt ferrite (BSCF) cathodes were investigated in the intermediate temperature range of solid oxide fuel cells (SOFCs). The characteristics and electrochemical performances of composited BSCF/samarium doped ceria (SDC); BSCF/gadolinium doped ceria (GDC); and BSCF/SDC/GDC were compared to single BSCF cathode. The BSCF used in this study were synthesized using glycine nitrate process and mechanically mixing was used to fabricate a composite cathode. Using a composite form, the thermal expansion coefficient (TEC) could be reduced and BSCF/SDC/GDC exhibited the lowest TEC value at $18.95{\times}10^{-6}K^{-1}$. The electrochemical performance from half cells and single cells exhibited nearly the same trend. All the composite cathodes gave higher electrochemical performance than the single BSCF cathode (0.22 $Wcm^{-2}$); however, when two kinds of electrolyte were used (BSCF/SDC/GDC, 0.36$Wcm^{-2}$), the electrochemical performance was lower than when the BSCF/SDC (0.45 $Wcm^{-2}$) or BSCF/GDC (0.45 $Wcm^{-2}$) was applied as cathode ($650^{\circ}C$, 97%$H_2$/3%$H_2O$ to the anode and ambient air to the cathode).

Keywords

References

  1. R.O' Hayre, S.W. Cha, W. Colella and F.B. Prinz, Fuel Cell Fundamentals, Wiley, New York, USA ( 2006).
  2. S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells, Elsevier, Oxford, UK (2003).
  3. J.H. Kim, Y. Kim, P.A. Connor and J.T.S. Irvine, J. Bae, J. Power Sources, 194, 704 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.024
  4. S.P. Simmer, M.D. Anderson, J.E. Coleman and J.W. Stevenson, J. Power Sources, 161, 115 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.103
  5. J.H. Kim, M. Cassidy, J.T.S. Irvine and J. Bae, Chem. Mater., 22, 883 (2010). https://doi.org/10.1021/cm901720w
  6. C. Fu, K. Sun, N. Zhang, X. Chen and D. Zhou, Electrochim. Acta, 52, 4589 (2007). https://doi.org/10.1016/j.electacta.2007.01.001
  7. Y.-M. Kim, S.-I. Pyun, J.-S. Kim and G.-J. Lee, J. Electrochem. Soc., 154, B802 (2007). https://doi.org/10.1149/1.2744135
  8. Y.-M. Kim and J. Bae, ECS Transactions, 13, 137 (2008).
  9. A. Esquirol, J. Kilner and N. Brandon, Solid State Ionics, 175, 63 (2004). https://doi.org/10.1016/j.ssi.2004.09.013
  10. C.R. Xia, W. Rauch, F.L. Chen and M.L. Liu, Solid State Ionics, 149, 11 (2002). https://doi.org/10.1016/S0167-2738(02)00131-5
  11. W. Zhou, R. Ran and Z. Shao, J. Power Sources, 192, 231 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.069
  12. Y.-M. Kim, P. Kim-Lohsoontorn and J. Bae, J. Power Sources, 195, 6420 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.095
  13. W.-X. Kao, M.-C. Lee, T.-N. Lin, C.-H. Wang and Y.-C. Chang, J. Power Sources, 195, 2220 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.057
  14. K. Wang, R. Ran, W. Zhou, H. Gu, Z. Shao and J. Ahn, J. Power Sources, 179, 60 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.051
  15. O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, Solid State Ionics, 22, 241 (1987). https://doi.org/10.1016/0167-2738(87)90039-7
  16. H.Y. Tu, Y. Takeda, N. Imanishi and O. Yamamoto, Solid State Ionics, 117, 277 (1999). https://doi.org/10.1016/S0167-2738(98)00428-7
  17. A.M. -Amesti, A. Larranaga, L.M.R. -Martínez, A.T. Aguayo, J.L. Pizarro, M.L. Nó, 509 A. Laresgoiti and M.I. Arriortua, J. Power Sources, 185, 401 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.049
  18. Y.-M. Kim, P. Kim-Lohsoontorn, S.-W. Baek and J. Bae, Int. J. Hydrogen Energy, 36, 3138 (2011). https://doi.org/10.1016/j.ijhydene.2010.10.065
  19. S. McIntosh, J.F. Vente, W.G. Haije, D.H.A. Blank and H.J.M. Bouwmeester, Chem. Mater., 18, 2187 (2006). https://doi.org/10.1021/cm052763x
  20. Z.P. Shao and S.M. Haile, Nature, 431, 170 (2004). https://doi.org/10.1038/nature02863

Cited by

  1. Structural and electrochemical properties of interconnect integrated solid oxide fuel cell vol.82, 2016, https://doi.org/10.1016/j.materresbull.2016.01.053
  2. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells vol.04, pp.02, 2016, https://doi.org/10.1142/S2251237316300011
  3. THERMAL AND ELECTRICAL PROPERTIES OF Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (x = 0.4, 0 ≤ y ≤ 0.25) AS CATHODE MATERIAL FOR IT-SOFCs vol.02, pp.03n04, 2014, https://doi.org/10.1142/S2251237314500051
  4. BSCF/GDC as a refined cathode to the single-chamber solid oxide fuel cell based on a LAMOX electrolyte vol.44, pp.2, 2018, https://doi.org/10.1016/j.ceramint.2017.10.103
  5. Improving catalyst stability in nano-structured solar and fuel cells vol.259, 2016, https://doi.org/10.1016/j.cattod.2015.05.010