DOI QR코드

DOI QR Code

Ionic Conductivity of Anion Receptor Grafted Siloxane Polymers for Solid Polymer Electrolytes

  • Lee, Won-Sil (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Dong-Wook (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Chang-In (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Woo, Seong-Ihl (Department of Chemical and Biomolecular Engineering & WCU Energy Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kang, Yong-Ku (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Received : 2010.12.24
  • Accepted : 2011.01.30
  • Published : 2011.03.31

Abstract

We have prepared siloxane polymers grafted with trifluoromethane-sulfonylamide and oligoether side chains for solid polymer electrolytes with enhanced ionic conductivity. The grafted trifluoromethane sulfonylamide groups seem to be effective as an anion recepting site to enhance the ionic conductivity of the solid polymer electrolyte. The anion receptor grafted siloxane polymers showed one order of magnitude higher ionic conductivity than the siloxane polymers without anion receptor grafts. The fitting parameter A of the VTF plot which was related to the carrier density of the electrolyte increased with increasing the number of grafted anion receptor. The results of experiment indicate that the anion-complexing site of the anion receptor grafted polymer host effectively traps the anions. The anion receptor grafted polymer was found to be a promising material for lithium polymer batteries.

Keywords

References

  1. E.J. Cairns and P. Albertus, Annu. Rev. Chem. Biomol. Eng., 1, 299 (2010). https://doi.org/10.1146/annurev-chembioeng-073009-100942
  2. J.W. Fergus, J. Power Sources, 195, 4554 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.076
  3. P.V. Wright, Br. Polym. J. 7, 319 (1975) https://doi.org/10.1002/pi.4980070505
  4. M.B. Armand, J.M. Chabagno, M.J. Duclot, J. Fast Ion Transport in Solid, p 131 Elsevier New York 1979.
  5. H. Zhang, S. Kulkarni and S.L. Wunder, J. Phys. Chem., 111, 3583 (2007). https://doi.org/10.1021/jp064585g
  6. A. Ghosh and P. Kofinas, J. Electrochem. Soc., 155, A428 (2008) https://doi.org/10.1149/1.2901905
  7. T. Niitani, M. Amaike, H. Nakano, K. Dokko, and K. Kanamura, J. Electrochem. Soc., 156, A577 (2009). https://doi.org/10.1149/1.3129245
  8. H.R. Allcock, S.E. Kuharick, C.S. Reed and M.E. Napierala, Macromolecules, 29, 3384 (1996) https://doi.org/10.1021/ma9514535
  9. H.R. Allcock, R. Ravikiran, S.J.M. O'Connor, Macromolecules, 30, 3184 (1997) https://doi.org/10.1021/ma9616423
  10. D. Fish, I.M. Khan, E. Wu and J. Smid, Br. Polym. J., 20, 281 (1988). https://doi.org/10.1002/pi.4980200320
  11. A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe and M Watanabe, Macromolecules, 32, 1541 (1999) https://doi.org/10.1021/ma981436q
  12. Z. Zhang, L.J. Lyons, K. Amine and R. West, Macromolecules, 38, 5714 (2005) https://doi.org/10.1021/ma050066k
  13. I. Y. Kang, W. Lee, D.H. Suh and C. Lee, J. Power Sources, 119-121, 448 (2003) https://doi.org/10.1016/S0378-7753(03)00189-7
  14. Y. Kang, J. Lee, J.-I. Lee and C. Lee, J. Power Sources, 165, 92 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.019
  15. B. Xie, H.S. Lee, H. Li, X.Q. Yang, J. McBreen and L.Q. Chen, Electrochem. Comm. 10, 1195 (2008) https://doi.org/10.1016/j.elecom.2008.05.043
  16. L.F. Li, H.S. Lee, H. Li, X.Q. Yang, K.W. Nam, W.S. Yoon, J. McBreen and X.J. Huang, J. Power Sources, 184, 517 (2008) https://doi.org/10.1016/j.jpowsour.2008.03.016
  17. H.S. Lee, Z.F. Ma, X.Q. Yang, X. Sun and J. McBreen, J. Electrochem. Soc., 151, A1429 (2004). https://doi.org/10.1149/1.1779407
  18. H.S. Lee, X.Q. Yang and J. McBreen, J. Electrochem. Soc., 143, 3825 (1996). https://doi.org/10.1149/1.1837302
  19. H.S. Lee, X.Q. Yang, C. Xiang, J. McBreen, J.H. Callahan, and L.S. Choi, J. Electrochem. Soc., 146(3), 941 (1999). https://doi.org/10.1149/1.1391703
  20. W.S. Lee, S.I. Woo, D.W. Kim, C. Lee and Y. Kang, Macromol. Res., 18, 266 (2010). https://doi.org/10.1007/s13233-010-0306-6
  21. Y. Kang, W. Lee, D.H. Suh and C. Lee, J. Power Sources, 119-121, 448 (2003). https://doi.org/10.1016/S0378-7753(03)00189-7
  22. Y. Kang, H.J. Kim, E. Kim, B. Oh and J.H. Cho, J. Power Sources, 92, 255 (2001) https://doi.org/10.1016/S0378-7753(00)00546-2
  23. H.J. Kim, E. Kim, S.B. Rhee, Korea Polym. J., 4, 83 (1996)
  24. Y. Kang, H.J. Kim, E. Kim, B. Oh, J.H. Cho, Proc. Electrochem. Soc., 25-99, 534 (1999).
  25. F.M. Gray, Polymer Electrolytes, The Royal Society of Chemistry, Cambridge, 1997.
  26. S. Tabata, T. Hirakimoto, H. Tokuda, Md. A.A.H. Susan and M. Watanabe, J. Phys. Chem. B, 108, 19518 (2004). https://doi.org/10.1021/jp048370n

Cited by

  1. Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells vol.6, pp.105, 2016, https://doi.org/10.1039/C6RA22335D
  2. Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte 2017, https://doi.org/10.1007/s11581-017-2230-7