• Title/Summary/Keyword: single-atom

Search Result 192, Processing Time 0.021 seconds

Magnetic Properties of Ti0.96Co0.02Fe0.02O2 (Ti0.96Co0.02Fe0.02O2의 자기적 특성)

  • Kim, E.C.;Lee, S.R.;Kim, S.J.;Han, G.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.43-46
    • /
    • 2007
  • The samples were synthesized by using a solid state reaction. The X-ray diffraction pattern for $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$ showed a pure rutile phase with tetragonal structures. Mixtures of the proper proportions of the elements sealed in evacuated quartz ampoule were heated at $870{\sim}930^{\circ}C$ for one day and then slowly cooled down to room temperature at a rate of $10^{\circ}C/h$. In order to obtain single phase material, it was necessary to grind the sample after the first firing and to press the powders into pellets before annealing them for a second time in evacuated and sealed quartz ampoule. Magnetic properties have been investigated using the vibrating sample magnetometer(VSM). Room temperature magnetic hysteresis(M-H) curve showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied of 0.8T was estimated to be about $1.3{\mu}_B/CoFe$. But the magnetic moment per Fe atom under the applied of 0.8T was estimated to be about $0.02{\mu}_B/CoFe$ without Ti-getter.

Crystal Structure of Xenon Encapsulate within Na-A Zeolite

  • Im, U Taek;Park, Man;Heo, Nam Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.75-80
    • /
    • 2000
  • The positions of Xe atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated Na-A have been determined. Na-A was exposed to 1050atm of xenon gas at 400 $^{\circ}C$ for seven days, followed by cooling at pressure to encapsulate Xe atoms. The resulting crystal structure of Na-A(7Xe) (a = 12.249(1) $\AA$, $R_1$ = 0.065, and $R_2$ = 0.066) were determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(1) $^{\circ}C$ and 1 atm. In the crystal structure of Na-A(7Xe), seven Xe atoms per unit cell are distributed over four crystallographically distinct positions: one Xe atom at Xe(1) lies at the center of the sodalite unit, two Xe atoms at Xe(4) are found opposite four-rings in the large cavity, and four Xe atoms, two at Xe(2) and others at Xe(3), respectively, occupy positions opposite and between eight- and six-rings in the large cavity. Relatively strong interactions of Xe atoms at Xe(2) and Xe(3) with $Na^+$ ions of four-, eight-, and six-rings are observed:Na(1)-Xe(2) = 3.09(6), Na(2)-Xe(3) = 3.11(2), and Na(3)-Xe(2) = 3.37(8) $\AA$. In each sodalite unit, one Xe atom is located at its center. In each large cavity, six Xe atoms are found, forming a distorted octahedral arrangement with four Xe atoms, at equatorial positions (each two at Xe(2) and Xe(3)) and the other two at axial positions (at Xe(4)). With various reasonable distances and angles, the existence of $(Xe)_6$ cluster is proposed (Xe(2)-Xe(3) = 4.78(6) and 4.94(7), Xe(2)-Xe(4) = 4.71(6) and 5.06(6), Xe(3)-Xe(4) = 4.11(3) and 5.32(4) $\AA$, Xe(2)-Xe(3)-Xe(2) = 93(1), Xe(3)-Xe(2)-Xe(3) = 87(1), Xe(2)-Xe(4)-Xe(2) = 91(4), Xe(2)-Xe(4)-Xe(3) = 55(2), 59(1), 61(1), and 68(1), and Xe(3)-Xe(4)-Xe(3) = 89($^{\circ}1$)). These arrangements of the encapsulated Xe atoms in the large cavity are stabilized by alternating dipoles induced on Xe(2), Xe(3), and Xe(4) by eight- and six-ring $Na^+$ ions as well as four-ring oxygens, respectively.

Kr Atoms and Their Chlustering in Zeolite A

  • Im, U Taek;Jang, Jang Hwan;Jeong, Gi Jin;Heo, Nam Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1023-1029
    • /
    • 2001
  • The positions of Kr atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated zeolite A of unit-cell composition Cs3Na8HSi12Al12O48 (Cs3-A) have been determined. Cs3-A was exposed to 1025 atm of krypton gas at 400 $^{\circ}C$ for four days, followed by cooling at pressure to encapsulate Kr atoms. The resulting crystal structure of Cs3-A(6Kr) (a = $12.247(2)\AA$, R1 = 0.078, and R2 = 0.085) has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C$ and 1 atm. In the crystal structure of Cs3-A(6Kr), six Kr atoms per unit cell are distributed over three crystallographically distinct positions: each unit cell contains one Kr atom at Kr(1) on a threefold axis in the sodalite unit, three at Kr(2) opposite four-rings in the large cavity, and two at Kr(3) on threefold axes in the large cavity. Relatively strong interactions of Kr atoms at Kr(1) and Kr(3) with Na+ ions of six-rings are observed: Na-Kr(1) = 3.6(1) $\AA$ and Na-Kr(3) = $3.08(5)\AA.$ In each sodalite unit, one Kr atom at Kr(1) was displaced $0.74\AA$ from the center of the sodalite unit toward a Na+ ion, where it can be polarized by the electrostatic field of the zeolite, avoiding the center of the sodalite unit which by symmetry has no electrostatic field. In each large cavity, five Kr atoms were found, forming a trigonal-bipyramid arrangement with three Kr(2) atoms at equatorial positions and two Kr(3) atoms at axial positions. With various reasonable distances and angles, the existence of Kr5 cluster was proposed (Kr(2)-Kr(3) = $4.78(6)\AA$ and Kr(2)-Kr(2) = $5.94(7)\AA$, Kr(2)-Kr(3)-Kr(2) = 76.9(3), Kr(3)-Kr(2)-Kr(3) = 88(1), and Kr(2)-Kr(2)-Kr(2) = $60^{\circ}).$ These arrangements of the encapsulated Kr atoms in the large cavity are stabilized by alternating dipoles induced on Kr(2) by four-ring oxygens and Kr(3) by six-ring Na+ ions, respectively.

Study on the Long-term Reliability of Solar Cell by High Temperature & Humidity Test (고온고습 시험을 통한 태양전지의 장기 신뢰성에 관한 연구)

  • Kang, Min-Soo;Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.243-248
    • /
    • 2012
  • In this study, The report analysed the characteristics of power drop and damage of surface in solar cell through high temperature and humidity test. The solar cells were tested during the 1000hr in $85^{\circ}C$ temperature and 85% humidity conditions, that excerpted standard of PV Module(KS C IEC-61215). An analysis of the cell surface through EL(Electroluminescence), the cell has partly change of surface in yearly. Single-crystalline Solar cell efficiency is decreased from 17.7% to 15.6% and decreasing rate is 11.9%. On the other hand, Poly-crystalline Solar cell efficiency is decreased from 15.5% to 14.0% and decreasing rate is 9.3%. A comparison of the fill factor for analysis of electro characteristic in yearly, Single-crystalline Solar cell efficiency is decreased from 78.7% to 78.1% and decreasing rate is 4.7%. On the other hand, Poly-crystalline Solar cell efficiency is decreased from 78.1% to 76.7% and decreasing rate is 1.8%. Single-crystalline has more bigger power drop than poly-crystalline by the silicon purity and silicon atom arrangement. Also, FF decreasing rate has more bigger drop than efficiency decreasing rate for the reason that the damage of surface by exterior environmental factor is the more influence in cell than other reason that is decreasing FF by damage of p-n junction.

Synthesis, crystal structure, and thermal property of piperazine-templated copper(II) sulfate, {H2NCH2CH2NH2CH2CH2}{Cu(H2O)6}(SO4)2

  • Kim, Chong-Hyeak;Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.381-385
    • /
    • 2005
  • The title compound, $\{H_2NCH_2CH_2NH_2CH_2CH_2\}\{Cu(H_2O)_6\}(SO_4)_2$, I, has been synthesized under solvo/hydrothermal conditions and their crystal structure analyzed by X-ray single crystallography. Compound I crystallizes in the monoclinic system, $P2_1/n$ space group with a = 6.852(1), b = 10.160(2), $c=11.893(1){\AA}$, ${\beta}=92.928(8)^{\circ}$, $V=826.9(2){\AA}^3$, Z = 2, $D_x=1.815g/cm^3$, $R_1=0.031$ and ${\omega}R_2=0.084$. The crystal structure of the piperazine templated Cu(II)-sulfate demonstrate zero-dimensional compound constituted by doubly protonated piperazine cations, hexahydrated copper cations and sulfate anions. The central Cu atom has a elongated octahedral coordination geometry. The crystal structure is stabilized by three-dimensional networks of the intermolecular $O_{water}-H{\cdots}O_{sulfate}$ and $N_{pip}-H{\cdots}O_{sulfate}$ hydrogen bonds between the water molecules and sulfate anions and protonated piperazine cations. Based on the results of thermal analysis, the thermal decomposition reaction of compound I was analyzed to have three distinctive stages.

Re-evaluation of physicochemical and NMR data of triol ginsenosides Re, Rf, Rg2, and 20-gluco-Rf from Panax ginseng roots

  • Cho, Jin-Gyeong;In, Seo-Ji;Jung, Ye-Jin;Cha, Byeong-Ju;Lee, Dae-Young;Kim, Yong-Bum;Yeom, Myeonghun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • Ginseng roots were extracted with aqueous methanol, and extracts were suspended in water and extracted successively with ethyl acetate and n-butanol. Column chromatography using the n-butanol fraction yielded four purified triol ginseng saponins: the ginsenosides Re, Rf, Rg2, and 20-gluco-Rf. The physicochemical, spectroscopic, and chromatographic characteristics of the ginsenosides were measured and compared with reports from the literature. For spectroscopic analysis, two-dimensional nuclear magnetic resonance (NMR) methods such as $^1H$-$^1H$ correlation spectroscopy, nuclear Overhauser effect spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond connectivity were employed to identify exact peak assignments. Some peak assignments for previously published $^1H$-and $^{13}C$-NMR spectra were found to be inaccurate. This study reports the complete NMR assignment of 20-gluco-Rf for the first time.

Synthesis, Structure and Biological Properties of a Novel Copper (II) Supramolecular Compound Based on 1,2,4-Triazoles Derivatives

  • Qiu, Guang-Mei;Wang, Cui-Juan;Zhang, Ya-Jun;Huang, Shuai;Liu, Xiao-Lei;Zhang, Bing-Jun;Zhou, Xian-Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2603-2608
    • /
    • 2012
  • A novel mononuclear supramolecule of copper(II) has been synthesized with Ippyt ligand (Ippyt=3-(4'-imidazole phenyl)-5-(pyrid-2''-yl)-1,2,4-triazole) (1). Compound 1, namely [$Cu(Ippyt)_2(H_2O)_2$], has been characterized by single-crystal X-ray diffraction, IR spectrum, elemental analysis and thermogravimetric analysis. Structure determination reveals that the elongated-octahedral geometry is formed in the vicinity of the copper (II) atom being coordinated by four nitrogen atoms from two Ippyt ligands occupying the equatorial position and two oxygen atoms from two coordinated water molecules in the axial position, which together form the $N_4O_2$ donor set. Hydrogen bonding interactions between nitrogen and oxygen atoms result in the set up of a supramolecular network architecture. Biological properties including antibacterial activity and superoxide dismutase (SOD) mimetic activity of compound 1 have been investigated by agar diffusion method and the modified Marklund method, respectively. The results indicate that compound 1 exhibits a stronger antibacterial efficiency than the parent ligand and it also has a certain radical-scavenging activity.

Current Status and Perspectives of Graphene-based Membranes for Gas Separation (그래핀 기반 기체 분리막의 연구동향 및 전망)

  • Yoo, Byung Min;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.216-225
    • /
    • 2017
  • Since the experimental proof of one-atom-thick graphene single layer from graphite in 2004, graphene, as a leading material opening two-dimensional world, has been tremendously investigated owing to its intrinsic extraordinary physical properties. Among many promising graphene applications, it is believed that membranes might be one of the first significant applications for graphene and its derivatives (e.g., graphene oxide). Recently, a number of simulation results and proof-of-concept experimental approaches towards graphene membranes reflect such positive prospects. Moreover, graphene and graphene oxide already show many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness, excellent mechanical strength, high chemical and thermal stability, and the ability to generate nanopores in the two-dimensional, rigid hexagonal lattices or to create slit-like nanochannels between adjacent sheets. In this paper, important theoretical and experimental developments in graphene or graphene oxide-based membranes for gas separation based on intrinsic properties of graphene and its derivatives will be discussed, emphasizing on transport behavior, membrane formation methods, and challenging issues for actual membrane applications.

Novel Group 9 Metal Complexes Containing an S,S'-Chelating o-Carboranyl Ligand System: Synthesis, Crystal Structures, and Electrochemical Properties of Dinuclear [{(cod)M}2(S,S'-S2C2B10H10)] (cod = 1,5-cyclooctadiene;M = Rh OR Ir)] and Mononclear Cp*CoI[S,S'-S(S=PMe2)C2B10H10] Metal Complexs

  • Lee, Jong-Dae;Kim, Bo-Young;Lee, Chong-Mok;Lee, Young-Joo;Ko, Jae-Jung;Kang, Sang-Ook
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1012-1019
    • /
    • 2004
  • The synthesis of novel group 9 metal complexes containing the S,S'-chelate ligands, $Li_2S_2C_2B_{10}H_{10}$ (2a) and $LiS(S=PMe_2)C_2B_{10}H_{10$} (2b), is described. Two new dinuclear complexes of the type $[{(cod)M}_2(S,S'-S_2C_2B_{10}H_{10})]$ (cod = 1,5-cyclooctadiene; M = Rh (3a), or Ir (3b)) were synthesized by the reaction of chloridebridged dimers $[M({\mu}-Cl)(cod)]_2$ with one molar equivalent of the corresponding dilithium dithiolato ligand $Li_2S_2C_2B_{10}H_{10}$ (2a). X-ray crystal structure analysis of 3a revealed a dinuclear structure in which each (cod)Rh unit is attached to a distinct sulfur atom of a 1,2-dithio-o-carboranyl ligand (2a). Additionally, the electrochemical properties of 3a and 3b were investigated by cyclic voltammetry. In an analogous manner, reaction of the lithium dithiolato ligand $LiS(S=PMe_2)C_2B_{10}H_{10}$ (2b) with $Cp^{\ast}CoI_2(CO)$ produced a mononuclear dithiolato complex, $[Cp^{\ast}CoI{(S,S'-S(S=PMe_2)C_2B_{10}H_{10})}]$ (4), which was characterized by single-crystal X-ray analysis.

Protective Effects of Trithioformaldehyde against Radiation Damage of Mouse Jejunal Crypt Cells (TTFA의 마우스 공장 소낭선에 대한 방사선 방호작용)

  • Lee, Jong-Hwoa;Kwon, Jun-Tack;Cho, Byung-Heon
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.217-220
    • /
    • 1988
  • At present, the treatment of the radiation-induced diseases are only performing by the palliative treatment technique. Moreover, radioprotective drugs are a little toxic for human being and this seriously limits their application with various complication in clinical uses. Accordingly, new radioprotectors need developing. In our Lab., we synthesized trithioformaldehyde (TTFA), containing three sulfur atom, and examined the effect on mouse jejunal crypt cells after irradiation. Mice treated with TTF A (2.0 g/ kg) showed 78% survival ratio at 30 day after 800 rad irradiation. 1.0 g/kg and 2.0 g/kg of TTF A increased resistance of jejunal crypt cells to single doses of radiation by protection factors of 1.17 and 1.23, respectively.

  • PDF