• Title/Summary/Keyword: single seed

Search Result 420, Processing Time 0.031 seconds

A New Yellow Waxy Corn Hybrid with High Yield "Daehakchal Gold 1" for Edible

  • Lee, Hee-Bong;Choi, Yun-Pyo;Cha, Hui-Jeong;Lee, Moon-Sup;Choi, Hyeon-Gu;Joo, Jeong-Il;Kim, Myung-Kwon;Ji, Hee-Chung
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.279-283
    • /
    • 2009
  • A new yellow waxy corn hybrid "Daehakchal Gold 1" was developed from single cross between Yeongdeok Jaera and Okchen Jaera at Chungnam National University in 2007. Inbred CNU57 derived from Yeongdeok Jaera was used as the seed parent of Daehakchal Gold 1, and inbred CNU 27 derived from Okchen Jaera as the pollen parent. Tasseling date of this hybrid was seven day later than that of check hybrid, Chalok 1. Daehakchal Gold 1 was 19.7cm in ear length and 4.5cm in ear diameter. The yield of Daehakchal Gold 1 and check hybrid in dry matter were 146.5g and 113.9g per plant, respectively. On yield trial, which were increased 29.7% compared with a check hybrid, Chalok 1. Especially, Daehakchal Gold 1 had yellow kernels and good eating quality. The ratio of kernel set length/ear length was similar to Chalok 1. It is moderately resistant to Bioporalis maydis and corn borer. The yields of Daehakchal Gold 1 in fresh ear weight and in number of fresh ear were 16% and 8%, respectively, higher than those of a check hybrid in regional yield trials for three years. Seed production of this hybrid has gone well due to good match during crossing between seed and pollen parents.

Impact of Climate Change on Yield and Canopy Photosynthesis of Soybean (RCP 8.5 기후변화 조건에서 콩의 군락 광합성 및 수량 반응 평가)

  • Wan-Gyu, Sang;Jae-Kyeong, Baek;Dongwon, Kwon;Jung-Il, Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2022
  • Changes in air temperature, CO2 concentration and precipitation due to climate change are expected to have a significant impact on soybean productivity. This study was conducted to evaluate the climate change impact on growth and development of determinate soybean cultivar in the southern parts of Korea. The high temperature during vegetative period, which does not accompany the increase of CO2 concentration, increased the canopy photosynthetic rate in soybean, but after flowering, the high temperature above the optimal ranges interrupts the photosynthetic metabolism. In yield and yield components, high temperature reduced both the pod and seed number and single seed weight, resulting in a reduction of total seed yield. On the other hand, the increase in CO2 concentration dramatically increased the canopy photosynthetic rate over the whole growth period. In addition, high CO2 concentration increased the number of pods and seeds, which had a positive effect on total seed yield. Under concurrent elevation of air temperature and CO2 concentration, canopy photosynthesis increased significantly, but enhanced canopy photosynthesis did not lead to an increase in soybean seed yield. The increase in biomass and branch by enhanced canopy photosynthesis seems to be attributed to an increase in the total number of pods and seeds per plant, which compensates for the negative effects of high temperature on pod development. However, Single seed weight tended to decrease rapidly by high temperature, regardless of CO2 concentration level. Elevated CO2 concentration did not compensate for the poor distribution of assimilations from source to sink caused by high temperature. These results show that the damage of future soybean yield and quality is closely related to high temperature stress during seed filling period.

Mechanical evaluation of SiC-graphite interface of seed crystal module for growing SiC single crystals (탄화규소 단결정 성장을 위한 종자결정모듈의 탄화규소-흑연 간 접합계면의 기계적 특성 평가)

  • Kang, June-Hyuk;Kim, Yong-Hyeon;Shin, Yun-Ji;Bae, Si-Young;Jang, Yeon-Suk;Lee, Won-Jae;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.212-217
    • /
    • 2022
  • Large thermal stress due to the difference between silicon carbide and graphite's coefficients of thermal expansion could be formed during crystal growing process of silicon carbide (SiC) at high temperature. The large thermal stress could separate the SiC seed crystals from graphite components, which bring about the drop of the seed crystal during crystal growth. However, the bonding properties of SiC seed crystal module has hardly reported so far. In this study, SiC and graphite were bonded using 3 types of bonding agents and a three-point bending tests using a mixed-mode flexure test were conducted for the bonded samples to evaluate the bonding characteristics between SiC and graphite. Raman spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray Computed Tomography were used to analyze the bonding characteristics and the microstructures of the SiC-graphite interfaces bonded with the bonding agents. As results, an excellent bonding agent was chosen to fabricate SiC seed crystal module with 50 mm in diameter. An SiC single crystal with 50 mm in diameter was successfully grown without falling out during top seeded solution growth of SiC at high temperature.

Growth of $PbMg_{1/3}Nb_{2/3}O_3$ Single Crystals by Flux Method (융제법에 의한 $PbMg_{1/3}Nb_{2/3}O_3$단결정 성장)

  • 임경연;박찬석
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 1997
  • A perovskite relaxor ferroelectrics PMN is used as an important material to investigate the diffusive phase transition phenomena. In this study PMN single crystals were grown and the microstructure were observed. For the growth of PMN single crystals, the spontaneous nucleation technique and the TSSG technique were used. 2-5mm single crystals were grown from PbO self flux and it was observed that only PMN crystals were grown when excess MgO was added over 100% as flux. Single crystals with well developed (001) faces were obtained from PbO-B2O3 flux. single crystals larger than 1 cm were grown from PbO-B2O3 flux by TXXG technique. For higher quality crystals, optimization of the variables such as the rotation speed of seed crystal, the orientation of seed crystal, and cooling rate is needed. With grown crystals, it was confirmed by TEM diffraction pattern of thin plate crystal that the 1:1 ordering of Mg2+ and Nb5+ with small volume exists.

  • PDF

Microstructures fo Top Seed Milt-Processed $YBa_{2}$$Cu_{3}$$O_{7-\delta}$ Superconductor (종자결정법으로 성장시킨 $YBa_{2}$$Cu_{3}$$O_{7-\delta}$ 고온초전도체의 미세구조)

  • 한영희;성태현;한상철;이준성;정상진
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.43-46
    • /
    • 1999
  • The microstructure of Top Seed Milt-Processed $YBa_{2}$$Cu_{3}$$O_{7-\delta}$ single crystal was studied. It was presumed that the segregation of Y211 is due to the difference of growth rates between a, b axis and c axis in crystal direction. Corn kernel lide structure which was grown by the diffusion of Y211 was observed. At the near corner of the seed crystal, the diagonal line on Y123 cry crystal is formed by the corn kernel like structure.

  • PDF

Anatomical and Histochemical Changes in Berries of Piper nigrum L.

  • Kuriachen, P.M.;Dave, Yash
    • Journal of Plant Biology
    • /
    • v.32 no.1
    • /
    • pp.11-21
    • /
    • 1989
  • Anatomical and histochemical changes taking place in Piper nigrum berries during their ripening are described. The important observations on the pericarp are the development of sclereids in the exocarp, a continuous band of oil cells in mesocarp and the wall thickening of the endocarpic cells. The mature seed with a single layer of seed coat, representing the innermost tegment layer, encloses abundant perisperm. The endosperm and embryo are situated laterally at the terminal part of the seed. The perisperm is distinguished into an outer protein-rich zone and inner starch-filled zone. Starch and protein are also deposited in the mature pericarpic tissue. Lipid bodies are seem in the form of oil globules in oil cells.

  • PDF

Expression and Purification of Intact and Functional Soybean (Glycine max) Seed Ferritin Complex in Escherichia coli

  • Dong, Xiangbai;Tang, Bo;Li, Jie;Xu, Qian;Fang, Shentong;Hua, Zichun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.299-307
    • /
    • 2008
  • Soybean seed ferritin is essential for human iron supplementation and iron deficiency anemia prevention because it contains abundant bioavailable iron and is frequently consumed in the human diet. However, it is poorly understood in regards its several properties, such as iron mineralization, subunit assembly, and protein folding. To address these issues, we decided to prepare the soybean seed ferritin complex via a recombinant DNA approach. In this paper, we report a rapid and simple Escherichia coli expression system to produce the soybean seed ferritin complex. In this system, two subunits of soybean seed ferritin, H-2 and H-1, were encoded in a single plasmid, and optimal expression was achieved by additionally coexpressing a team of molecular chaperones, trigger factor and GroEL-GroES. The His-tagged ferritin complex was purified by $Ni^{2+}$ affinity chromatography, and an intact ferritin complex was obtained following His-tagged enterokinase (His-EK) digestion. The purified ferritin complex synthesized in E. coli demonstrated some reported features of its native counterpart from soybean seed, including an apparent molecular weight, multimeric assembly, and iron uptake activity. We believe that the strategy described in this paper may be of general utility in producing other recombinant plant ferritins built up from two types of subunits.

Proteomic Approach of the Protein Profiles during Seed Maturation in Common Buckwheat (Fagopyrum esculentum Moench.)

  • Park, Min-Hwa;Shin, Dong-Hoon;Han, Myoung-Hae;Yun, Young-Ho;Bae, Jeong-Sook;Lee, Yun-Sang;Chung, Keun-Yook;Lee, Moon-Soon;Woo, Sun-Hee
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.227-235
    • /
    • 2009
  • Single seeds of common buckwheat cultivar Suwon No. 1 when subjected to SDS-PAGE revealed very high polymorphism. High variation existed for protein or protein subunits with molecular weight 54-47kDa, 45-25kDa and 16-11kDa. The electrophoregram showed variation for globulin as well as other protein fractions. About 300 proteins were separated by two-dimensional electrophoresis in common buckwheat (Fagopyrum esculentum Moench.) seed. Seed maturation is a dynamic and temporally regulated phase of seed development that determines the composition of storage proteins reserves in mature seeds. Buckwheat seeds from 5, 10, 15, 20, and 25 days after pollination and matured stage were used for the analysis. This led to the establishment of high-resolution proteome reference maps, expression profiles of 48 spots. It was identified 48 proteins from MALDI-TOF/MS analysis of wild buckwheat seed storage proteins. The 48 proteins were found identical or similar to those of proteins reported in buckwheat and other plants; it is belonging to 9 major functional categories including seed storage proteins, stress/defense response, protein synthesis, photosynthesis, allergy proteins, amino acid, enzyme, metabolism, and miscellaneous. It appears that the major allergenic storage protein separated played the important role in buckwheat breeding and biochemical characterization.

OsDOR1, a novel glycine rich protein that regulates rice seed dormancy

  • Kim, Suyeon;Huh, Sun Mi;Han, Hay Ju;Cho, Mi Hyun;Lee, Gang Sub;Kim, Beom Gi;Kwon, Taek Yun;Yoon, In Sun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.90-90
    • /
    • 2017
  • Regulation of seed dormancy is important in many grains to prevent pre-harvest sprouting. To identify and understand the gene related to seed dormancy regulation, we have screened for viviparous phenotypes of rice mutant lines generated by insertion of Ds transposon in a Korean Japonica cultivar (Dongjin) background. One of the mutants, which represented viviparous phenotype, was selected for further seed dormancy regulation studies and designated dor1. The dor1 mutant has single Ds insertion in the second exon of OsDor1 gene encoding glycine-rich protein. The seeds of dor1 mutant showed a higher germination potential and reduced abscisic acid (ABA) sensitivity compared to wild type Dongjin. Over-expression of Dor1 complements the viviparous phenotype of dor1 mutant, indicating that Dor1 function in seed dormancy regulation. Subcellular localization assay of Dor1-GFP fusion protein revealed that the OsDor1 protein mainly localized to membrane and the localization of OsDOR1 was influenced by presence of a giberelin (GA) receptor OsGID1. Further bimolecular fluorescence complementation (BiFC) analysis indicated that OsDOR1 interact with OsGID1. The combined results suggested that OsDOR1 regulates seed dormancy by interacting with OsGID1 in GA response. Additionally, expression of OsDOR1 partially complemented the cold sensitivity of Escherichia coli BX04 mutant lacking four cold shock proteins, indicating that OsDOR1 possessed RNA chaperone activity.

  • PDF

Genetic Analysis of Seed Size in Watermelon (수박 종자크기에 대한 유전분석)

  • Kim, Yong-Jae;Yang, Tae-Jin;Park, Young-Hoon;Lee, Yong-Jik;Kang, Sun-Cheol;Kim, Yong-Kwon;Cho, Jeoung-Lai
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.412-419
    • /
    • 2009
  • In order to study the inheritance of watermelon seed size, we used six watermelon lines of different seed sizes as parental lines. Six lines include three accessions, 'PI525088' with giant seed (GS), 'Charleston Gray' with big seed (BS), and 'NT' with normal medium size seed (NS), and three near isogenic lines, 'NTss' with small seed (SS), 'NTms' with micro seed (MS) and 'NTts' with tomato seed size (TS) bred by crosses between accession 'NT' of normal seed size and accession 'TDR' of the smallest seed size,. We inspected $F_1$, $F_2$, $BC_1F_1$ (P1), $BC_1F_1$ (P2) populations from the crosses between the adjacent seed size materials like $GS{\times}BS$, $BS{\times}NS$, $NS{\times}SS$, and $MS{\times}TS$, and two crosses between parental lines showing relatively big difference in seed size such as $GS{\times}TS$ and $NS{\times}TS$. Partial single dominant inheritance patterns were observed between $GS{\times}BS$, $NS{\times}SS$, and $MS{\times}TS$ and inheritance patterns based on two genes or more than two genes were speculated between $BS{\times}NS$. A very wide segregation range was observed from the population of $GS{\times}TS$ indicating many quantitative genes involved in the seed sizes. Overall, we speculated that more than six genes are involved in between the biggest and smallest seed size watermelon and three major genes between the normal seed size and the smallest seed size watermelon.