• Title/Summary/Keyword: single loop structure

Search Result 116, Processing Time 0.023 seconds

Effect of Hydrolytic Temperature on Pore Structure of Alkoxide-derived Aluminas (Alkoxide 법으로 합성한 알루미나의 동공구조에 미치는 가수분해 온도의 영향)

  • 조정미;정필조
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.217-224
    • /
    • 1988
  • Pore structures of Alkoxide-derived aluminas are investigated by BET Nitrogen Sorption method. Aluminas are derived from hydrolysis of aluminum isopropoxide at 3$^{\circ}$and 8$0^{\circ}C$ with stoichiometric quantities of water in use. The resulting hydrolysates are then subjected to thermal treatment for a fixed period of time from 200$^{\circ}$to 50$0^{\circ}C$ in gradual fashions. The hydrolysates obtained at 3$^{\circ}C$ increase their pore volumes with increasing heat treatment, exhibiting their pore-size distributio as twinpeaked. In contrast, the reverse is true to the hydrolysates obtained at 8$0^{\circ}C$, showing their pore size distribution as single-peaked. This suggests that the pore shapes of the former shall be slit-shaped, whilst whose as the latter shall be of a ink-bottle shape. All the evidence indicates that the hydrolytic temperatures play an important role not only in determining the pore shapes of the alumina samples, but in controlling the liberation of structural water in the alumina layers. It is also, surmized that the subsequent heat treatment may at best affect the mode of pore size distribution for the resulting alumina product(s).

  • PDF

Temperature Dependent Cation Distribution in Tb2Bi1Ga1Fe4O12

  • Park, Il-Jin;Park, Chu-Sik;Kang, Kyoung-Soo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.110-113
    • /
    • 2008
  • In this study, heavy rare earth garnet $Tb_2Bi_1Ga_1Fe_4O_{12}$ powders were fabricated by a sol-gel and vacuum annealing process. The crystal structure was found to be single-phase garnet with a space group of Ia3d. The lattice constant $a_0$ was determined to be 12.465 ${\AA}$. From the analysis of the vibrating sample magnetometer (VSM) hysteresis loop at room temperature, the saturation magnetization and coercivity of the sample are 7.64 emu/g and 229 Oe, respectively. The N$\acute{e}$el temperature($T_N$) was determined to be 525 K. The M$\ddot{o}$ssbauer spectrum of $Tb_2Bi_1Ga_1Fe_4O_{12}$ at room temperature consists of 2 sets of 6 Lorentzians, which is the pattern of single-phase garnet. From the results of the M$\ddot{o}$ssbauer spectrum at room temperature, the absorption area ratios of Fe ions on 24d and 16a sites are 74.7% and 25.3%(approximately 3:1), respectively. These results show that all of the non-magnetic Ga atoms occupy the 16a site by a vacuum annealing process. Absorption area ratios of Fe ions are dependent not only on a sintering condition but also on the temperature of the sample. It can then be interpreted that the Ga ion distribution is dependent on the temperature of the sample. The M$\ddot{o}$ssbauer measurement was carried out in order to investigate the atomic migration in $Tb_2Bi_1Ga_1Fe_4O_{12}$.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

Regional Balanced Development Policy Leverage in the Capital and Non-Capital Areas : Focusing on Local Function Concentration and Dispersion Structure (수도권과 비수도권의 지역균형발전 정책 레버리지 탐색 : 지역의 기능 집중·분산 구조를 중심으로)

  • Lee, Jin-Hee;Lee, Man-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.502-512
    • /
    • 2019
  • To examine the problem structure of balanced regional development policy and identify the causes of the gap between the capital and non-capital areas, this study examined the causal structure in terms of the concentration and distribution of functions in the metropolitan area and non-capital area and explored the policy leverage. As a research method, the causal map was drawn using System Dynamics techniques and policy leverage was derived through an exploration of the feedback structure. In particular, the causes of the problems in balanced regional development policies were approached by system accidents rather than by single-circuit accidents, and causality analysis was performed among the variables constituting balanced regional development policies based on system accidents. In particular, it singled out 31 variables, developed 13 feedback loops, and confirmed four major policy leverages, including relocation of the capital function, local decentralization policies, consistent development, and investment practices centered on the Non­Capital Area. Subsequently, a follow-up study by computer simulation is needed by modeling the structure of the system to identify the ripple effect of the policies of the Capital Area on the Non­Capital Area.

Ferroelectric, Leakage Current Properties of BiFeO3/Pb(Zr0.52Ti0.48)O3 Multilayer Thin Films Prepared by Chemical Solution Deposition (Chemical Solution Deposition 방법을 이용한 BiFeO3/Pb(Zr0.52Ti0.48)O3 다층박막의 전기적 특성에 대한 연구)

  • Cha, J.O.;Ahn, J.S.;Lee, K.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • $BiFeO_3/Pb(Zr_{0.52}Ti_{0.48})O_3$(BFO/PZT) multilayer thin films have been prepared on a Pt/Ti/$SiO_2$/Si(100) substrate by chemical solution deposition. BFO single layer, BFO/PZT bilayer and multilayer thin films were studied for comparison. X-ray diffraction analysis showed that the crystal structure of all films was multi-orientated perovskite phase without amorphous and impurity phase. The leakage current density at 500 kV/cm was reduced by approximately four and five orders of magnitude by bilayer and multilayer structure films, compared with BFO single layer film. The low leakage current density leads to saturated P-E hysteresis loops of bilayer and multilayer films. In BFO/PZT multlayer film, saturated remanent polarization of $44.3{\mu}C/cm^2$ was obtained at room temperature at 1 kHz with the coercive field($2E_c$) of 681.4 kV/cm.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Crystallization Behavior and Electrical Properties of BNN Thin Films by IBSD Process

  • Lou, Jun-Hui;Jang, Jae-Hoon;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.960-964
    • /
    • 2004
  • [ $Ba_2NaNb_5O_{15}$ ](BNN) thin films have been prepared by the ion beam sputter deposition (IBSD) method on Pt coated Si substrate at temperature as low as $600^{\circ}C$ XRD, SEM were used to investigate the crystallization and microstructure of the films. It was found that the films were crack-free and uniform in microstructure. The electric properties of thin films were carried out by observation of D-E hysteresis loop, dielectric constant and leakage current. It was found the deposition rate strongly influenced the phase formation of the films, where the phase of $BaNb_2O_6$ was always formed when the deposition rate was high. However, the single phase (tungsten bronze structure ) BNN thin film was obtained with the deposition rate as low as $22{\AA}/min$. The remanent polarization Pr and dielectric constant are about 1-2 ${\mu}C/cm^2$ and $100\sim200$, respectively. It was also founded the electric properties of thin films were influenced by the deposition rate. The Pr and dielectric constant of films increased with the decrease of deposition rate. The effects of annealing temperature and annealing time to the crystallization behavior of films were studied. The crystallization of thin film started at about $600^{\circ}C$. The adequate crystallization was gotten at the temperature of $650^{\circ}C$ when the annealing time is 0.5 hour or at the temperature of $600^{\circ}C$ when the annealing time is long as 6 hours.

  • PDF

Design of an IFFT∪FFT processor with manipulated coefficients based on the statistics distribution for OFDM (확률분포 특성을 이용한 OFDM용 IFFT∪FFT프로세서 설계)

  • Choi, Won-Chul;Lee, Hyun;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.87-94
    • /
    • 2003
  • In this paper, we propose an IFFT/FFT design method to minimize quantization error in IEEE 802.11a WLAN. In the proposed algorithm, the twiddle coefficient of IFFT/FFT processor is manipulated by the statistics distribution of the input data at each stage. We applies this algorithm to radix-2/$^2$ SDF architecture. Both IFFT and FFT processor shares the circuit blocks cause to the symmetric architecture. The maximum quantization error with the 10 bits length of the input and output data is 0.0021 in IFFT and FFT that has a self-loop structure with the proposed method. As a result, the proposed architecture saves 3bits for the data to keep the same resolution compared with the conventional method.

Preliminary Study of RF Surface Coil to Get High Resolution Skin Image (고해상도 피부영상을 얻기 위한 Surface Coil의 예비연구)

  • Woo, Dong-Cheol;Yoon, Seong-Ik;Yoon, Moon-Hyun;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.35-38
    • /
    • 2005
  • In our country, the skin image and MR Microscopy research has been processed but there were not their outstanding results. So this study start to improve the techniques can get high resolution skin images and to make RF surface coils. Volume coils are sometimes unavailable, or do not provide adequate RF power or SNR for some applications. In high resolution skin and tissue structure images current coils have a technical limitation. It is well known that standard single-loop surface coils, although offering high SNR characteristics, have poor B1 homogeneity. As the RF surface coil need change its geometry we get improved images. So, The magnetic field simulation that is first step to make and design RF surface coil will support reference data.

  • PDF

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.