• Title/Summary/Keyword: single loop control

Search Result 303, Processing Time 0.036 seconds

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

Synchronization loop by vector product in single-phase system (단상시스템에서 벡터적(vector product)에 의한 동기 루프)

  • 배기훈;기상우;조국춘;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.219-225
    • /
    • 1998
  • A Diode bridge rectifier and a phase-controlled thyristor bridge rectifier generate harmonics in power system. Nowadays, power factor and harmonics are important performance in electrical equipment for railway vehicle. Many researchers have been trying to improve the power factor and ac-side harmonics. Therefore the PWM converter has been used to operate at unity power factor and to reduce ac-side current harmonics. This paper proposes the synchronization loop by vector product in single-phase PWM converter. The proposed control method can realize the sinusolidal input current waveform and the effective unity power factor. The validity of the proposed control method is verified through the experimental result.

  • PDF

Commutation Torque Ripple Reduction in Brushless DC Motor Drives Using a Single DC Current Sensor

  • Won Chang-hee;Lee Kyo-Beum;Bak Dae-Jin;Song Joong-Ho;Choy Ick;You Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.409-413
    • /
    • 2001
  • This paper presents a comprehensive study result on reducing commutation torque ripples generated in brushless dc motor drives with only a single dc-link current sensor provided. In brushless dc motor drives with only a single current sensor, the commutation torque ripple suppression that is practically effective in low speed as well as high speed regions has not been reported. A proposed commutation compensation technique based on deadbeat dc-link current controller takes a closed loop control scheme and a parameter insensitive property. The proposed control method is verified through simulations and experiments.

  • PDF

Design of Multirate Controller using a Current Estimator (Current Estimator를 이용한 멀티레이트 제어기 설계)

  • 황희철;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.190-190
    • /
    • 2000
  • This paper presents a multirate state feedback control (MRSFC) method for systems sensitive to disturbance and noise based on the multirate estimator design using the current estimator. MRSFC updates the controller output slower than the measurement sampling frequency of system output by a lifting factor R=T$\sub$c//T$\sub$s/. The closed-loop MRSFC system is less sensitive to disturbance and noise due to filtering effect than the conventional single-rate control system. The multirate estimator gain is obtained from solving a conventional pole placement problem such that MRSFC has the same spectrum of eigenvalues in the s-plane as the single-rate control. We applied the proposed multirate state feedback controller to a galvanometer servo system. Simulation and experimental results show that settling and tracking performances are improved compared with a conventional single-rate pole placement control (PPC).

  • PDF

Design of an Adaptive Fuzzy Backstepping Controller for a Single-Link Flexible-Joint Robot (단일 축 유연 관절 로봇의 적응 퍼지 백스테핑 제어기 설계)

  • Kim, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.62-70
    • /
    • 2008
  • An adaptive fuzzy backstepping controller is proposed for the motion control for a single-link flexible-joint robot in the presence of parametric uncertainties. Fuzzy logic system is used to approximate the uncertainties of functions and a backstepping technique is employed to deal with the mismatched problem. A compensation controller is also employed to estimates the bound of approximation error so that the shattering effect of the control effort can be reduced. Thus the asymptotic stability of the closed loop control system can be obtained based on a Lyapunov synthesis approach. Numerical simulation results for a single-link flexible-joint robot are included to show the effectiveness of proposed controller.

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM AUGMENTATION

  • SUH J. H.;LEE K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.545-554
    • /
    • 2005
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3­wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems. Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm proposed in this research.

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

Small-Signal Modeling and Analysis of Input Series-Output Parallel Connected Converter System for High Voltage Power Conversion Application (고 입력 전압 응용에 적합한 입력직렬-출력병렬 컨버터 시스템의 소신호 분석)

  • You, Jeong-Sik;Kim, Jung-Won;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2712-2714
    • /
    • 1999
  • The small signal model for input series-output parallel connected converter system employing charge control together with input capacitor voltage feedback loop is developed. From the model developed, the effect of input capacitor voltage feedback loop to the system stability and outer loop compensator design is analyzed. Theoretical results and simulation show that input capacitor voltage feedback loop has no critical effects on the system stability, so the system can be reduced to a equivalent single module for the stability analysis and outer loop compensator design.

  • PDF

Continuous-time Direct Adaptive Pole Placement Control (연속시간 직접 적응 극배치 제어)

  • Kim, Jong-Hwan;Koo, Keun-Mo;Lee, Seon-Woo;Kim, Tai-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.407-412
    • /
    • 1990
  • This note presents a novel algorithm for a continuous-time direct adaptive pole placement control for single-input single-out nonminimum phase systems. Although the resulting overall closed-loop system is locally stable, assumptions about parameter convergence or the nature of the external input are not considered.

  • PDF

A novel PLL control method for robust three-phase thyristor converter under sag and notch conditions

  • Lee, Changhee;Yoo, Hyoyol
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.87-88
    • /
    • 2014
  • The paper presents a novel phase locked loop(PLL) control method for robust three-phase thyristor dual converters under sag, notch, and phase loss conditions. This method is applied to three line to line voltages of grid to derive three phase angle errors from three separated single-phase PLLs. They can substitute for abnormal phase to guarantee the synchronization in the various grid fault conditions. The performance of novel PLL with moving average method is verified through simulations.

  • PDF