• Title/Summary/Keyword: single gene analysis

Search Result 908, Processing Time 0.03 seconds

Finding associations between genes by time-series microarray sequential patterns analysis

  • Nam, Ho-Jung;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.161-164
    • /
    • 2005
  • Data mining techniques can be applied to identify patterns of interest in the gene expression data. One goal in mining gene expression data is to determine how the expression of any particular gene might affect the expression of other genes. To find relationships between different genes, association rules have been applied to gene expression data set [1]. A notable limitation of association rule mining method is that only the association in a single profile experiment can be detected. It cannot be used to find rules across different condition profiles or different time point profile experiments. However, with the appearance of time-series microarray data, it became possible to analyze the temporal relationship between genes. In this paper, we analyze the time-series microarray gene expression data to extract the sequential patterns which are similar to the association rules between genes among different time points in the yeast cell cycle. The sequential patterns found in our work can catch the associations between different genes which express or repress at diverse time points. We have applied sequential pattern mining method to time-series microarray gene expression data and discovered a number of sequential patterns from two groups of genes (test, control) and more sequential patterns have been discovered from test group (same CO term group) than from the control group (different GO term group). This result can be a support for the potential of sequential patterns which is capable of catching the biologically meaningful association between genes.

  • PDF

Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes

  • Kim, Jong-Kun;Park, Young-Jin;Kong, Won-Sik;Kang, Hee-Wan
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.331-335
    • /
    • 2010
  • In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/${\mu}g$ of DNA in $1{\times}10^7$ protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes.

Gene Therapy for Mice Sarcoma with Oncolytic Herpes Simplex Virus-1 Lacking the Apoptosis-inhibiting Gene, icp34.5

  • Lan, Ping;Dong, Changyuan;Qi, Yipeng;Xiao, Gengfu;Xue, Feng
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.379-386
    • /
    • 2003
  • A mutant herpes simplex virus 1, mtHSV, was constructed by inserting the E. coli beta-galactosidase gene into the loci of icp34.5, the apoptosis-inhibiting gene of HSV. The mtHSV replicated in and lysed U251 (human glioma cells), EJ (human bladder cells), and S-180 (mice sarcoma cells), but not Wish (human amnion cells) cells. With its intact tk (thymidine kinase) gene, mtHSV exhibited susceptibility to acyclovir (ACV), which provided an approach to control viral replication. An in vivo test with mtHSV was conducted in immune-competent mice bearing sarcoma S-180 tumors, which were treated with a single intratumoral injection of mtHSV or PBS. Tumor dimensions then were measured at serial time points, and the tumor volumes were calculated. Sarcoma growth was significantly inhibited with prolonged time and reduced tumor volume. There was microscopic evidence of necrosis of tumors in treated mice, whereas no damage was found in other organs. Immunohistochemical staining revealed that virus replication was exclusively confined to the treated tumor cells. HSV-1 DNA was detected in tumors, but not in the other organs by a polymerase chain reaction analysis. From these experiments, we concluded that mtHSV should be a safe and promising oncolytic agent for cancer treatment.

Supervised Model for Identifying Differentially Expressed Genes in DNA Microarray Gene Expression Dataset Using Biological Pathway Information

  • Chung, Tae Su;Kim, Keewon;Kim, Ju Han
    • Genomics & Informatics
    • /
    • v.3 no.1
    • /
    • pp.30-34
    • /
    • 2005
  • Microarray technology makes it possible to measure the expressions of tens of thousands of genes simultaneously under various experimental conditions. Identifying differentially expressed genes in each single experimental condition is one of the most common first steps in microarray gene expression data analysis. Reasonable choices of thresholds for determining differentially expressed genes are used for the next-stap-analysis with suitable statistical significances. We present a supervised model for identifying DEGs using pathway information based on the global connectivity structure. Pathway information can be regarded as a collection of biological knowledge, thus we are trying to determine the optimal threshold so that the consequential connectivity structure can be the most compatible with the existing pathway information. The significant feature of our model is that it uses established knowledge as a reference to determine the direction of analyzing microarray dataset. In the most of previous work, only intrinsic information in the miroarray is used for the identifying DEGs. We hope that our proposed method could contribute to construct biologically meaningful structure from microarray datasets.

Cloning and Sequence Analysis of Two Catechol-degrading Gene Clusters from a Phenol-utilizing Bacterium Pseudomonas putida SM25

  • Jung, Young-Hee;Ka, Jong-Ok;Cheon, Choong-Ⅰll;Lee, Myeong-Sok;Song, Eun-Sook;Daeho Cho;Park, Sang-Ho;Ha, Kwon-Soo;Park, Young-Mok
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • A 6.1 kb Sph I fragment from the genomic DNA of Pseudomonas putida SM 25 was cloned into the veetor pUC19. The open reading frame of catB was found to consist of 1,122 nucleotides. The sequence alignment of the catB gene products from different kinds of bacteria revealed an overall identity ranging from 40 to 98%. The catC gene contained an open reading frame of 96 codons, from which a protein with a molecular mass of about 10.6 kDa was predicted. The amino acids in the proposed activesite region of CatC were found to be almost conserved, including the charged residues. Since the catBC genes in P. putida SM25 were tightly linked, the could be regulated under coordinate transcription, and transcribed from a single promoter located upstream of the catB gene, as in P. putida RBI.

Morphological, Phylogenetic and Biological Characteristics of Ectropis obliqua Single-Nucleocapsid Nucleopolyhedrovirus

  • Ma Xiu-cui;Xu Hai-Jun;Tang Mei-Jun;Xiao Qiang;Hong Jian;Zhang Chuan-Xi
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • The tea looper caterpillar, Ectropis obliqua, is one of the major pests of tea bushes. E. obliqua single-nucleocapsid nucleopolyhedrovirus (EcobSNPV) has been used as a commercial pesticide for biocontrol of this insect. However only limited genetic analysis for this important virus has been done up to now. EcobSNPV was characterized in this study. Electron microscopy analysis of the occlusion body showed polyhedra of 0.7 to $1.7\;{\mu}m$ in diameter containing a single nucleocapsid per envelope of the virion. A 15.5 kb genomic fragment containing EcoRI-L, EcoRI-N and HindIII-F fragments, was sequenced. Analysis of the sequence revealed that the fragment contained eleven potential open reading frames (ORFs): lef-1, egt, 38.7k, rrl, polyhedrin, orfl629, pk-1, hoar and homologues to Spodoptera exigua multicapsid NPV (SeMNPV) ORFs 15, 28, and 29. Gene arrangement and phylogeny analysis suggest that EcobSNPV is closely related to the previously described Group II NPV. Bioassays on lethal concentration $(LC_{50}\;and\;LC_{90})$ and lethal time $(LT_{50}\;and\;LT({90})$ were conducted to test the susceptibility of E. obliqua larvae to the virus.

Mutation Screening and Association Study of the Folylpolyglutamate Synthetase (FPGS) Gene with Susceptibility to Childhood Acute Lymphoblastic Leukemia

  • Piwkham, Duangjai;Siriboonpiputtana, Teerapong;Beuten, Joke;Pakakasama, Samart;Gelfond, Jonathan AL;Paisooksantivatana, Karan;Tomlinson, Gail E;Rerkamnuaychoke, Budsaba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4727-4732
    • /
    • 2015
  • Background: Folylpolyglutamate synthetase (FPGS), an important enzyme in the folate metabolic pathway, plays a central role in intracellular accumulation of folate and antifolate in several mammalian cell types. Loss of FPGS activity results in decreased cellular levels of antifolates and consequently to polyglutamatable antifolates in acute lymphoblastic leukemia (ALL). Materials and Methods: During May 1997 and December 2003, 134 children diagnosed with ALL were recruited from one hospital in Thailand. We performed a mutation analysis in the coding regions of the FPGS gene and the association between single nucleotide polymorphisms (SNPs) within FPGS in a case-control sample of childhood ALL patients. Mutation screening was conducted by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and subsequently with direct sequencing (n=72). Association analysis between common FPGS variants and ALL risk was done in 98 childhood ALL cases and 95 healthy volunteers recruited as controls. Results: Seven SNPs in the FPGS coding region were identified by mutation analysis, 3 of which (IVS13+55C>T, g.1297T>G, and g.1508C>T) were recognized as novel SNPs. Association analysis revealed 3 of 6 SNPs to confer significant increase in ALL risk these being rs7039798 (p=0.014, OR=2.14), rs1544105 (p=0.010, OR= 2.24), and rs10106 (p=0.026, OR=1.99). Conclusions: These findings suggested that common genetic polymorphisms in the FPGS coding region including rs7039789, rs1544105, and rs10106 are significantly associated with increased ALL risk in Thai children.

Identification of Superior Single Nucleotide Polymorphisms (SNP) Combinations Related to Economic Traits by Genotype Matrix Mapping (GMM) in Hanwoo (Korean Cattle)

  • Lee, Yoon-Seok;Oh, Dong-Yep;Lee, Yong-Won;Yeo, Jung-Sou;Lee, Jea-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1504-1513
    • /
    • 2011
  • It is important to identify genetic interactions related to human diseases or animal traits. Many linear statistical models have been reported but they did not consider genetic interactions. Genotype matrix mapping (GMM) has been developed to identify genetic interactions. This study uses the GMM method to detect superior SNP combinations of the CCDC158 gene that influences average daily gain, marbling score, cold carcass weight and longissimus muscle dorsi area traits in Hanwoo. We evaluated the statistical significance of the major SNP combinations selected by implementing the permutation test of the F-measure. The effect of g.34425+102 A>T (AA), g.8778G>A (GG) and g.4102+36T>G (GT) SNP combinations produced higher performance of average daily gain, marbling score, cold carcass weight and the longissimus muscle dorsi area traits than the effect of a single SNP. GMM is a fast and reliable method for multiple SNP analysis with potential application in marker-assisted selection. GMM may prospectively be used for genetic assessment of quantitative traits after further development.

The SNP of WBP1 is associated with heifer reproductive performance in the Korean native cattle Hanwoo

  • Jeong, Jiyeon;Lee, Seung-Hwan;Choi, Inchul
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.27-31
    • /
    • 2019
  • It is well documented that intensive selection in dairy cattle for economic value such as increased milk yield led to a decline in reproductive performance. Recent studies using genome-wide association studies (GWASs) discovered candidate genes involved in the lower fertility including embryo development and conception rates. However, the information, which showed a lower reproductive performance, is limited to dairy cattle, especially Holstein, and the candidate genes were not examined in the Korean native cattle Hanwoo which has been intensively selected and bred for meat in the last few decades. We selected the candidate genes WBP1 and PARM1 reported to be associated with cow and/or heifer conception in dairy cattle and analyzed the genotype because those genes have non-synonymous single nucleotide polymorphisms (SNPs). To determine the single base change, we used the high resolution melting (HRM) assay which is rapid and cost-effective for a small number of genes. We found that most heifers with higher conception (1: service per conception) have the AA genotype coding Threonine rather than Proline in the WBP1 gene. We did not detect an association for a SNP in PARM1 in our analysis. In conclusion, the genetic variation of WBP1 can be used as a selective marker gene to improve reproductive performance, and HRM assay can be used to identify common SNP genotypes rapidly and cost effectively.

Characterization of RAD4 Homologous Gene from Coprinus cinereus (균류 Coprinus cinereus에서 DNA 회복에 관여하는 RAD4 유사유전자의 분리와 특성)

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. The insert DNA of the RAD4 homolog was contained 3.2 kb. Here, we report the characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the RAD4 homolog gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 1.2 kb PvuII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. In order to investigation whether the increase of transcripts by DNA damaging agent, transcripts levels were examined after treating the cells. The level of transcript did not increase by untraviolet light (UV). This result indicated that the RAD4 homologous gene is not UV inducible gene. Gene deletion experiments indicate that the RAD4 homologous gene is essential for cell viability.