• Title/Summary/Keyword: single crack

Search Result 515, Processing Time 0.026 seconds

Finite Element Modeling of Perturbation Fields due to Colonies of Stress Corrosion Cracks(SCCs) in a Gas Transmission Pipeline (가스공급배관에서 응력부식균열 군에 의해 교란된 자속의 유한요소 모델링)

  • Yang, Sun-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.493-500
    • /
    • 2001
  • The detection of axial cracks using conventional MFL pig is a significant challenge in the gas pipeline inspection. In this study, a technique using interaction of circumferentially induced torrents with axial stress corrosion crack is presented. The feasibility of this technique is investigated using finite element modeling. Finite element analysis of such interaction is a difficult problem in terms of both computation time and memory requirements. The challenges arise due to the nonlinearity of material properties, the small sire of tight cracks relative to that of the magnetizer, and also time stepping involved in modeling velocity effects. This paper presents an approach based on perturbation methods. The overall analysis procedure is divided into 4 simple steps that can be performed sequentially. Modeling results show that this technique can effectively detect colonies of SCC as well as single SCC.

  • PDF

Ultrasonic Flaw Detection in Turbine Rotor Disc Keyway Using Neural Network (신경회로망을 이용한 터빈로타 디스크 키웨이의 결함 검출)

  • Son, Young-Ho;Lee, Jong-O;Yoon, Woon-Ha;Lee, Byung-Woo;Seo, Won-Chan;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A number of stress corrosion cracks in turbine rotor disk keyway in power plants have been found and the necessity has been raised to detect and evaluate the cracks prior to the catastrophic failure of turbine disk. By ultrasonic RF signal analysis and using a neural network based on bark-propagation algorithm, we tried to evaluate the location, size and orientation of cracks around keyway. Because RF signals received from each reflector have a number of peaks, they were processed to have a single peak for each reflector. Using the processed RF signals, scan data that contain the information on the position of transducer and the arrival time of reflected waves from each reflector were obtained. The time difference between each reflector and the position of transducer extracted from the scan data were then applied to the back-propagation neural network. As a result, the neural network was found useful to evaluate the location, size and orientation of cracks initiated from keyway.

Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation (유한요소 연성파손 모사기법을 이용한 노치 결함 반경 크기에 따른 파괴역학적 평가)

  • Bae, Keun Hyung;Jeon, Jun Young;Han, Jae Jun;Nam, Hyun Suk;Lee, Dae Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.693-701
    • /
    • 2016
  • In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness($J_{IC}$) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

Integrated Fitness-for-service Program for Natural Gas Transmission Pipeline (천연가스 공급배관의 사용적합성 통합프로그램)

  • Kim, Woo-Sik;Kim, Young-Pyo;Kim, Cheol-Man;Baek, Jong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • For fitness-for-service analyses of underground natural gas pipelines, engineering assessment methods against possible defects need to be developed. The assessment methods for high pressure pipeline of KOGAS, was developed using the full size pipe burst tests and the finite element analysis. It included the defect assessment methods for a single and multi-corrosion, corrosion in girth welding part, corrosion in seam welding part, the mechanical damage defects as dent and gouge, crack and large plastic deformation of API 5L X65 pipe. In addition, we developed method to assess pipeline integrity by internal and external load to buried pipeline. Evaluation results were compared with other methods currently being applied to the gas pipeline. The program of Windows environment is made for easily using assessment methods. It provides a consistent user interface, so non-professional technician can easily and friendly use the FFS program from company intranet. Several evaluation programs is easily installed using one installer. Each program constitutes a common input interface and the output configuration program, and evaluation result store and can be recalled at any time. The FFS program based on independent evaluation method is used to evaluate the integrity and safety of KOGAS pipeline, and greatly contribute to safe and efficient operation of pipeline. This paper presents experimental, analytical and numerical investigations to develop the FFS methods for KOGAS pipeline, used as high pressure natural gas transmission pipeline within KOREA. Also, it includes the description of the integrated program for FFS methods.

  • PDF

A Study on Thermal Shock, Thermal Expansion and Thermal Cracking of Rocks under High Temperature (고온하에서 암석의 열충격, 열팽창 및 열파괴에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.22-40
    • /
    • 1995
  • Thermomechanical characteristics of rocks such as thermal shock, thermal expansion, thermal cracking were experimentally investigaed using Iksan granite, Cheonan tonalite and Chung-ju dolomite to obtain the basic data for proper design and Chung-ju dolomite to obtain the basic data for proper design and stability analysis of underground structures subjected to temperature changes. The effect of thermal shock did not appear when the heating speed was under 3$^{\circ}C$/min. and there existed little difference between multi-staged cyclic heating and single-cycled heating. Thermal expansion of rocks was affected by mineral composition, crack porosity and the degree of thermal craking. In quartz-beraring multimineralic rocks such as Iksan granite and Cheonan tonalite, the thermal expansion coefficient increaseed continuously with temperature rise, but that of Chung-ju dolomite which was a monomineralic rock showed a constant value for the temperature above 250$^{\circ}C$, Chung-ju dolomite yielded the lowest critical threshold temperature(Tc) of 100$^{\circ}C$ and unstable thermal cracking was initiated above the new threshold temperature(Tc')of 300$^{\circ}C$. Above Tc' thermal cracks grew but they were not interconnected. Iksan granite showed closing of microcracks to the temperature of 100$^{\circ}C$, then expanded linearly to Tc of 200$^{\circ}C$. Above Tc, thermal cracking was initiated and progressed rapidly and almost all the grain boundaries were cracked at 600$^{\circ}C$. Cheonan tonalite also showed similar behavior to iksan granite except that Tc was 350$^{\circ}C$ and that thermal cracks propagated more rapidly. Thermal expansions calculated by Turner's equation were found to be valid in predicting the thermal expansion and cracking behavior of rocks.

  • PDF

New processing technique of TFA-MOD YBCO coated conductors using the '211' process (211 공정을 이용한 새로운 TFA-MOD YBCO 박막 선재 제조)

  • Lim, Jun-Hyung;Jang, Seok-Hern;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Park, Eui-Cheol;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.140-144
    • /
    • 2006
  • We fabricated the YBCO films on single crystal $LaAlO_3$ substrates via a metal organic deposition (MOD) process. In the process, $Y_2Ba_1Cu_1O_x$ and $Ba_3Cu_5O_8$ powders were dissolved in trifluoroacetic acid (TFA) followed by calcining and firing heat treatments. To evaluate the effects of the firing temperature on YBCO phase formation and critical properties, the films were fired at $750^{\circ}C,\;775^{\circ}C\;and\;800^{\circ}C$ after calcining at $430^{\cric}C$. Microstructure observation indicated that a crack-free surface formed and a strong biaxial texture was developed. The FWHM of out-of-plane texture was measured to be in the range of $4.3^{\cric}-7.0^{\circ}$ for all the films. When the YBCO film was fired at $775^{\cric}C$, it had the highest critical properties: 88.5 K of critical temperature and 16 A/cm-width of critical current ($1MA/cm^2$ as critical current density). On the other hand, those properties were degraded as firing at $750^{\circ}C\;and\;800^{\circ}C$. It is considered that the improved critical values are partly owing to dense and homogeneous microstructure, strong texture, and high oxygen content.

  • PDF

Dispersion Characteristics of Wettable Powder Suspension by Ultrasonication (초음파 처리에 의한 수화제 현탁액의 분산 특성)

  • 나우정;주은선;김영복;송민근;이경렬
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.351-360
    • /
    • 2003
  • This study was carried out to settle the plugging problem which occurs frequently when agricultural wettable powder is used in pest control work using the crushing and the dispersing effects caused by irradiation of ultrasonic wave. Sonication was applied to the wettable powder suspension in a beaker for 30 seconds using a 28 kHz, 200 W PZT BLT, and the image of suspension before and after sonication was observed using a microscope and a SEM. The image of tow commercial wettable powder suspensions in water observed using an optics microscope showed that the agglomerated particles were irregularly distributed over the whole observed region when stirred mechanically, while showing more uniform distribution composed of comparatively single particles in the whole observed region after sonication. Concerning the above, the projected areas of particles in the four suspensions after sonication were decreased distinctively in the observed range of the microscope and the atomization of crystals was much developed. Over the measured range of 5.6∼4,157 ${\mu}$m particle size, the overall projected area of particles was decreased to 58.3∼89.6% on the average after sonication. When the SEM images of sonicated wettable powder suspensions dissolved in water and CH$_3$OH were compared to the suspensions before sonication, such phenomena as the atomization of particles, the expansion of voids between particles, the reduction and the decrease of agglomerated particle groups, and the progress of crack developments on the surface of flake-shaped particles were observed. It seemed possible that the plugging problem that occurs frequently in pest control machine when using wettable powder would be settled by the use of sonication.

Manufacturing and Evaluation of the Properties of Hybrid Bulk Material by Shock-compaction of Nanocrystalline Cu-Ni Mixed Powder (나노 구리-니켈 혼합분말의 충격압축법을 통한 복합벌크재의 제조 및 특성평가)

  • Kim, Wooyeol;Ahn, Dong-Hyun;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • In this study, nanocrystalline Cu-Ni bulk materials with various compositions were cold compacted by a shock compaction method using a single-stage gas gun system. Since the oxide layers on powder surface disturbs bonding between powder particles during the shock compaction process, each nanopowder was hydrogen-reduced to remove the oxide layers. X-ray peak analysis shows that hydrogen reduction successfully removed the oxide layers from the nano powders. For the shock compaction process, mixed powder samples with various compositions were prepared using a roller mixer. After the shock compaction process, the density of specimens increased up to 95% of the relative density. Longitudinal cross-sections of the shock compacted specimen demonstrates that a boundary between two powders are clearly distinguished and agglomerated powder particles remained in the compacted bulk. Internal crack tended to decrease with an increase in volumetric ratio of nano Cu powders in compacted bulk, showing that nano Cu powders has a higher coherency than nano Ni powders. On the other hand, hardness results are dominated by volume fraction of the nano Ni powder. The crystalline size of the shock compacted bulk materials was greatly reduced from the initial powder crystalline size since the shock wave severely deformed the powders.

Computation of the Higher Order Derivatives of Energy Release Rates in a Multiply Cracked Structure for Probabilistic Fracture Mechanics and Size Effect Law (확률론적 파괴역학 및 Size Effect Law에 적용을 위한 다중 균열 구조물에서의 에너지 해방률의 고차 미분값 계산)

  • Hwang, Chan-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.391-399
    • /
    • 2008
  • In this paper, we further generalize the work of Lin and Abel to the case of the first and the second order derivatives of energy release rates for two-dimensional, multiply cracked systems. The direct integral expressions are presented for the energy release rates and their first and second order derivatives. The salient feature of this numerical method is that the energy release rates and their first and second order derivatives can be computed in a single analysis. It is demonstrated through a set of examples that the proposed method gives expectedly decreasing, but acceptably accurate results for the energy release rates and their first and second order derivatives. The computed errors were approximately 0.5% for the energy release rates, $3\sim5%$ for their first order derivatives and $10\sim20%$ for their second order derivatives for the mesh densities used in the examples. Potential applications of the present method include a universal size effect model and a probabilistic fracture analysis of cracked structures.

Microstructures and Tensile Properties in Arc Brazed Joints of Ferritic Stainless Steel using Cu-8.6%Al Insert Metal (Cu-8.6wt%Al 삽입금속을 사용한 페라이트계 스테인리스강의 아크 브레이징 접합부의 미세조직과 인장성질)

  • Cho, Young-Ho;Chung, Chang-Eun;Kang, Myoung-Chang;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.85-92
    • /
    • 2011
  • Microstructures and tensile properties in arc brazed joints of ferritic stainless steel, 429EM using Cu-8.6%Al insert metal was investigated as function of brazing current. The brazing speed was fixed at 800mm/min and brazing current varied in the range of 80A to 120A. The initial phase of filler metal was Cu single phase. However, the insert metal structures of brazed joints was composed of Cu matrix and intermetallic compound such as ${\gamma}_1(Al_4Cu_9)$, and flower-shape Fe-Cr. The fraction of ${\gamma}_1(Al_4Cu_9)$ phase was similar with 80A and 100A brazing currents while that of brazed with 120A was decreased. On the other hand, the fraction of Fe-Cr phase increased with increasing of the brazing current. A reaction layer at the base metal/insert metal interface was observed and this reaction layer was thickened with increasing of the brazing current. In the brazed joints with the current lower than 100A, crack was grew up along the interface which was perpendicular to the tensile stress, and then, passed through the insert metal in the final stage of fracture. As the brazing current increased to 120A, fracture occurred at the base metal.