• Title/Summary/Keyword: single cell plant

Search Result 145, Processing Time 0.028 seconds

Application of the SCGE Assay for Detecting Induced DNA Damage in Plant Leaves

  • Kim, Jin Kyu;Song, Hi Sup;Kim, Do Young;Gichner, Tomas
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2003.11a
    • /
    • pp.68-73
    • /
    • 2003
  • The possibility of using the alkaline protocol of the single cell gel electrophoresis (SCGE) assay as a method for detecting induced DNA damage has been studied for six major plants. The EMS was applied as a model genotoxic agent on young excised leaves of the tested crops for 18 h at 26$^{\circ}C$ in the dark. With increasing concentrations of 0 to 10 mM EMS, the DNA damage, expressed by the averaged median tail moment values, significantly increased in nuclei of all plants studied. As the results, no correlation between the diameter of nuclei and sensitivity to EMS treatment was observed. The data obtained demonstrate the feasibility of using the SCGE assay for detecting induced DNA damage in plants.

  • PDF

Story of Johnsongrass Mosaic (Poty)virus in Australia

  • Oh, Hae-Young
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.61-74
    • /
    • 2002
  • One of the major aims in studying plant viruses is to minimise the development of symptoms in infected plants. With the advent of in vitro transcript mediated research on plant viruses, substantial progress has been made. This article describes the biology of a plant specific RNA virus, Johnsongrass mosaic virus (JGMV), important to Australian sorghum and corn agriculture and, in particular, at a molecular level which of the RNA sequences in its genome that make it possible for the virus to move from cell to cell, and eventually spread systemically throughout the entire plant. The JGMV has caused considerable yield losses in maize and sorghum over a number of years in Australia. Incidents where 100% of the crop has been infected are on record. The use of this virus is convenient under laboratory conditions because it can be readily transmitted by mechanical inoculation with infected leaf sap, which obviates the need for maintaining aphid colonies. The JGMV is a single stranded positive sense RNA virus.

  • PDF

Silencing of CaCDPK4 ( Capsicum annuum Calcium Dependent Protein Kinase) and ItsOrtholog, NbCDPK5 Induces Cell Death in Nicotiana benthamiana

  • Eunsook Chung;Kim, Young-Cheol;Oh, Sang-Keun;Younghee Jung;Kim, Soo-Yong;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.1-77
    • /
    • 2003
  • We have isolated a full-length cDNA clone, CaCDPK4 encoding a typical calcium-dependent protein kinase (CDPK) from hot pepper cDNA library. Genomic southern blot analysis showed that it belongs to a multigene family, but represents a single copy gone in hot pepper genome. RNA expression pattern of this gene revealed that it is induced by infiltration of Xanthomonas axonopodis pv. glycines Bra into hot pepper leaves but not by water deficit stress. However, high salt treatment of NaCl (0.4 M) solution to hot pepper plants strongly induced CaCDPK4 gene. In addition, this gene is weakly responsive to the exogenous application of salicylic acid or ethephon. Biochemical study of the GST-CaCDPK4 recominant protein showed that it autophosphorylates in vitro and the presence of EGTA, a calcium chelater, eliminates the kinase activity of the recombinant protein. As a way to identify the in vivo function of CaCDPK4 in plants, VIGS (Virus-Induced Gene Silencing) was employed. Agrobacterium-mediated TRV silencing construct containing the kinase and calmodulin domain of CaCDPK4 resulted in cell death of Nicotiana benthamiana plants. A highly homologous H benthamiana CDPK gene, NbCDPK5, to CaCDPK4 was cloned from N. benthamiana cDNA library. VIGS of NbCDPK5 also resulted in cell death. The molecular characterization of this cell death phenotype is being under investigation.

  • PDF

Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling

  • Piao, Weilan;Han, Su-Hyun;Sakuraba, Yasuhito;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.773-786
    • /
    • 2017
  • The loss of green coloration via chlorophyll (Chl) degradation typically occurs during leaf senescence. To date, many Chl catabolic enzymes have been identified and shown to interact with light harvesting complex II to form a Chl degradation complex in senescing chloroplasts; this complex might metabolically channel phototoxic Chl catabolic intermediates to prevent oxidative damage to cells. The Chl catabolic enzyme 7-hydroxymethyl Chl a reductase (HCAR) converts 7-hydroxymethyl Chl a (7-HMC a) to Chl a. The rice (Oryza sativa) genome contains a single HCAR homolog (OsHCAR), but its exact role remains unknown. Here, we show that an oshcar knockout mutant exhibits persistent green leaves during both dark-induced and natural senescence, and accumulates 7-HMC a and pheophorbide a (Pheo a) in green leaf blades. Interestingly, both rice and Arabidopsis hcar mutants exhibit severe cell death at the vegetative stage; this cell death largely occurs in a light intensity-dependent manner. In addition, 7-HMC a treatment led to the generation of singlet oxygen ($^1O_2$) in Arabidopsis and rice protoplasts in the light. Under herbicide-induced oxidative stress conditions, leaf necrosis was more severe in hcar plants than in wild type, and HCAR-overexpressing plants were more tolerant to reactive oxygen species than wild type. Therefore, in addition to functioning in the conversion of 7-HMC a to Chl a in senescent leaves, HCAR may play a critical role in protecting plants from high light-induced damage by preventing the accumulation of 7-HMC a and Pheo a in developing and mature leaves at the vegetative stage.

Localization of Single Chain Fv Antibodies (scFv) in Transgenic Tobacco Ptants Showing Resistance against Tomato Bushy Stunt Virus

  • Jeun, Y.C.;Boonrod, K.;Nagy, P.;Conrad, U.;Krczal, G.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.75.2-75
    • /
    • 2003
  • To develop an effective protection strategy against tomato bushy stunt virus (TBSV), tobacco plants expressing single-chain Fv antibodies (scFv), were established. A previous had shown that the replication activity of viral replicase was inhibited by the selected scFvs. Moreover, no systemic symptom was found after virus inoculation on leaves of wt N. benthamiana infiltrated with an Agrobacterium suspension resulting i3l expression of the scFvs. However, control plants showed systemic symptoms. In this study the localization of the scFvs within two transgenic plant lines, (CP28H3, CP-P55) was demonstrated using immunogold labelling. The gold particles, indicating the presence of scFv, were mostly found In the cytoplasm of the plant cells including chloroplasts and in the cell walls. However, they were hardly found in the vacuole, nucleoplasm and intercellular spaces. Gold particles often accumulated in either the cytosol or chloroplasts showing a specific labeling, There was no difference in type of gold labeling between both transgenic lines. The localization of the scFv in the cytoplasm further conforms the inhibition of the RNA-dependent RNA polymerase (RdRp) by the selected scFv because it is known that the RdRp is localized to membraneous cytosolic structures.

  • PDF

Characterization of the Rosellinia necatrix Transcriptome and Genes Related to Pathogenesis by Single-Molecule mRNA Sequencing

  • Kim, Hyeongmin;Lee, Seung Jae;Jo, Ick-Hyun;Lee, Jinsu;Bae, Wonsil;Kim, Hyemin;Won, Kyungho;Hyun, Tae Kyung;Ryu, Hojin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.362-369
    • /
    • 2017
  • White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world's most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.

Induction of Systemic Resistance against Bacterial Leaf Streak Disease and Growth Promotion in Rice Plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8

  • Hata, Erneeza Mohd;Yusof, Mohd Termizi;Zulperi, Dzarifah
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 µmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.

Developmental and Structural Diversity of Regenerated Plants in Cell and Tissue Cultures (세포조직배양계에서 재생된 식물의 발생 및 형태학적 다양성)

  • 소웅영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1993.07a
    • /
    • pp.1-36
    • /
    • 1993
  • It is possible to regenerate plants from calli, single cells and protoplasts of numerous species via organogenasis or embryogenesis in cell and tissue culture systems. Also such regeneration of plants can directly occur from cells of explants. However certain plant species has not been yet provided cultures suitable for plant regeneration from cells or tissues. For example, we have to confirm the regenerability of plant from cells before preparing transformed cells for application. Even more, it is very important to notice that regenerated plants in cell and tissue cultures often show structural abnormality. The mojority of those plants is functionally disordered and eventually cases degenerated. One of such examples is vitreous plants which are manifested mainly in the leaves and manifesteds to a lesser extent in the stems and roots. Regenerants in suspension cultures show more frequent vitrification than on gelled media so that relative humidity and water potential are the key factors involved in abnormal morphogenesis in vitro. The other is that somatic embryos formed in media containing BAP or high concentration of sucrose show frequently cotyledon aberrancy such as polycotyledon and born type cotyledon. The embryos with aberrant cotyledon of Codonopsis lanceolata could not germinate or regenerate into plants in many cases. In contrast, the polycotyledon embryos of Aralia cordata germinated in higher percentage than two cotyledonary embryos, but horn type cotyledonary embryos rarely germinated. The major cause of poor germination is the abnormal development of plumule apex meristem.

  • PDF

Initial Divisions of Microspores in In Vitro Cultured Anthers of Cultivated Paeonia albiflora (균약 약배양에 있어서 소포자의 초기분열)

  • 한창열
    • Journal of Plant Biology
    • /
    • v.19 no.2
    • /
    • pp.45-48
    • /
    • 1976
  • Anthers of cultivated Paeonia albiflora were cultured on media supplemented with various combinations of growth regulators. Although the number of anthers with emerged calluses were very few, in the sectioned anthers were found many multinucleate, 2-celled, or multicellular microspores, the one-celled multinucleate microspores being most abundant in number, and the multicellular ones the least. In 2-celled or 3-celled microspores two kinds were observed: one is ordinary one with single nucleus in each cell, and the other is multinucleate one. Majority of the 2-celled microspores was found to be of equational-division irrespective of whether they were multinucleate micropores or ordinary nonmultinucleate ones.

  • PDF

Ultrastructures of Colletotrichum orbiculare in Cucumber Leaves Expressing Systemic Acquired Resistance Mediated by Chlorella fusca

  • Kim, Su Jeung;Ko, Eun Ju;Hong, Jeum Kyu;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Chlorella, one single-cell green algae organism that lives autotrophically by photosynthesis, can directly suppress some plant diseases. The objective of this study was to determine whether pre-spraying with Chlorella fusca suspension could induce systemic acquired resistance (SAR) in cucumber plants against anthracnose caused by Colletotrichum orbiculare. In order to illustrate SAR induced by algae, infection structures in host cells were observed under a transmission electron microscope (TEM). Cytological changes as defense responses of host mesophyll cells such as accumulation of vesicles, formation of sheath around penetration hyphae, and thickness of cell wells adjoining with intracellular hyphae were demonstrated in cucumber leaves. Similar defense responses were also found in the plant pre-treated with DL-3-aminobutyric acid, another SAR priming agent. Images showed that defense response of host cells was scarcely observed in untreated leaf tissues. These cytological observations suggest that C. fusca could induce SAR against anthracnose in cucumber plants by activating defense responses of host cells.