• 제목/요약/키워드: simultaneous production

검색결과 355건 처리시간 0.026초

Effects of the Mixed Fermentation of Torulaspora delbrueckii and Saccharomyces cerevisiae on the Non-Volatile and Volatile Compounds and the Antioxidant Activity in Golden Dried Longan Wine

  • Sanoppa, Kanokchan;Huang, Tzou-Chi;Wu, Ming-Chang
    • 한국미생물·생명공학회지
    • /
    • 제48권1호
    • /
    • pp.1-11
    • /
    • 2020
  • The aim of this study was to investigate the effects of Torulaspora delbrueckii and Saccharomyces cerevisiae, as pure fermenters and mixed fermenters (simultaneous and sequential culture), on the production of non-volatiles and volatiles, and on the antioxidant activity in Golden Dried Longan juice and Golden Dried Longan wines. Alanine, arginine, glutamic acid, leucine, proline, and gamma-aminobutyric acid (GABA) were the most prominent amino acids that were found in these wines. The Golden Dried Longan Wine fermented with monocultures of S. cerevisiae and T. delbrueckii produced a total volatile aroma content of 393.21 mg/l and 383.20 mg/l, respectively. Simultaneous culture of the two organisms produced the highest total volatile aroma content, that affected most volatile compounds including isobutanol, ethyl acetate, ethyl decanoate, ethyl heptanoate, ethyl hexanoate, ethyl pentanoate, isoamyl acetate, and isobutyl acetate. Of the four treatments, the sequential culture possessed the highest total phenolic content (5.80 mg gallic acid equivalents (GAE)/ml). In addition, the total phenolic content significantly correlated with the antioxidant activity of the Golden Dried Juice and Golden Dried Longan Wine. These results suggest that co-cultures of the two organisms used in the production of the Golden Dried Longan Wine may improve the intensity and complexity of its aroma.

태음인(太陰人) 청심연자탕(淸心蓮子湯)의 동시분석 및 항비만 효과 (Simultaneous Analysis and Anti-obesity Effect of Taeeumin Cheongsimyeonja-tang)

  • 서창섭;정수진;김정훈;유새롬;신현규
    • 사상체질의학회지
    • /
    • 제25권1호
    • /
    • pp.51-61
    • /
    • 2013
  • Objectives We performed the simultaneous analysis for three compounds in Cheongsimyeonja-tang (CSYJT) and evaluated its anti-obesity effect. Methods The column for separation of three compounds was used Gemini $C_{18}$ column and maintained at $40^{\circ}C$. The mobile phase for gradient elution consisted of two solvent systems. The analysis was carried out at a flow rate of 1.0 mL/min with PDA detection at 275 nm. The injection volume was $10{\mu}L$. 3T3-L1 preadipocytes were differentiated into adipocytes by adding insulin, dexamethasone and 3-isobutyl-1-methylxanthine (IBMX) for 8 days in the absence or presence of CSYJT. Anti-obesity effects of CSYJT were evaluated by Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, triglyceride contents, and leptin production. Results Calibration curves were acquired with $r^2$ >0.9999. The contents of baicalin, wogonoside and baicalein in CSYJT were 14.54-14.65 mg/g, 5.24-5.27 mg/g and 0.01-0.02 mg/g, respectively. CSYJT showed inhibitory effect on lipid accumulation and GPDH activity in the differentiated 3T3-L1 cells. Furthermore, CSYJT significantly decreased contents of triglyceride and leptin production in 3T3-L1 adipocytes. Conclusions These results will be helpful to improve quality control and anti-obesity effect of Taeeumin CSYJT.

단백질 분해 효소를 이용한 스피루리나 추출물 제조 공정 최적화 (Optimization of Proteolytic Enzyme Treatment for the Production of Spirulina Extract)

  • 인만진
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.550-555
    • /
    • 2008
  • 세포벽 분해 효소와 단백질 분해 효소를 이용하여 스피루리나 추출물을 효율적으로 생산할 수 있는 방법을 조사하였다. 특히 단백질 분해 효소의 처리 조건을 최적화하여 효율적인 스피루리나 추출물의 제조공정을 제시하였다. 세포벽 분해 효소인 Tunicase는 스피루리나의 중량 기준으로 2%를 사용하였고 2시간 동안 반응시켰다. 상업용 단백질 분해 효소로는 Alcalase를 사용하였다. 이때, Alcalase의 최적 사용량은 1%이었으며, 효소 반응 시간은 2시간이 적절하였다. Tunicase와 Alcalase의 처리 방법에서 Tunicase를 먼저 사용한 후 Alcalase를 사용하는 순차적으로 처리하는 것이 고형분 회수율과 spirulina extraction (SE) index를 최대로 증가시킬 수 있는 효과적인 방법이었다. 두 효소를 순차적으로 반응시키면 단순 열수 추출보다 고형분 회수율은 약 56%($45.2%\;{\rightarrow}\;70.7%$), SE index는 약 100%($11.4%\;{\rightarrow}\;22.8%$) 증가하였다.

균체재순환 및 동시당화발효에 의한 전분으로 부터의 반회분식 에탄올 발효 (Semibatch Ethanol Production from Starch by Simultaneous Saccharification and Fermentation Using Cell Recycle)

  • 김철호;유연우김철이상기
    • KSBB Journal
    • /
    • 제5권4호
    • /
    • pp.335-339
    • /
    • 1990
  • 전분으로 부터 에탄올을 생산하기 위한 경제적인 공정을 개발하기 위하여 Zymomonas mobilis와 당화효소(AMG)를 사용한 반 회분식 동시 당화 발효공정올 연구 하였다. 응집성 에탄올 균주인 Z. mobilis ZM40l과 침전조를 사용한 균체 재순환 방식에 의한 반회분식 동시 당화발효 공정에서는 에탄올 생산성이 제2차 및 제3차 발효에서 각각 4.1g / I / h 및 4.3 g / I / h이었다. 이에 비해 미세여과막(microfiltration) 장치에 의한 Z. mobilis ZM4의 재순환 방식을 사용하는 공정에서는 에탄올 생산성이 제2차 및 제3차 발효에서 모두 5.4 g / l / h로 더 높았다. 에탄올 생산 시설이 large-seale임을 고려할 때 미세여과막을 사용하는 반회분식 공정이 에탄올 생산성과 seale-up의 용이성 및 운전의 간편성등의 관점에서 가장 개발 가능성이 높은 공정인 것으로 판단되었다.

  • PDF

제지 슬러지의 동시당화발효에서 젖산과 유산균 생산을 위한 최적 배양 조건 (Optimum Conditions for the Simultaneous Saccharification and fermentation of Paper Sludge and Fermentation of paper Sludge to Produce lactic acid and viable Lactobacillus cells)

  • 정다연;이상목;구윤모;소재성
    • KSBB Journal
    • /
    • 제18권1호
    • /
    • pp.14-18
    • /
    • 2003
  • 본 연구에서는 제지 슬러지를 이용한 SSF 공정에 L..paracasei KLB58을 적용하여 젖산과 더불어 생균제용 균체를 경제적으로 대량 생산하고자 하였다. KLB58의 배양온도와 섬유소 가수분해 효소인 $\beta$-glucosidase의 농도를 조절하여 최적의 생산 조건을 확인해 본 결과, 37$^{\circ}C$ 에서 2 unit/ml의 $\beta$-glucosidase를 첨가하여 배양하였을 때 최대의 젖산과 균체를 생산하였다. 또한 $\beta$-glucosidase를 포함하지 않아도 상대적으로 많은 양의 젖산과 균체를 생산하였으므로, 이에 대한향후 연구가 기대된다.

Optimal Culture Conditions for Mycelial Growth and Exo-polymer Production of Ganoderma applanatum

  • Jeong, Yong-Tae;Jeong, Sang-Chul;Yang, Byung-Keun;Islam, Rezuanul;Song, Chi-Hyun
    • Mycobiology
    • /
    • 제37권2호
    • /
    • pp.89-93
    • /
    • 2009
  • The effect of fermentation parameters and medium composition on the simultaneous mycelial growth and exo-polymer production from submerged cultures of Ganoderma applanatum was investigated in shake-flask cultures. The optimum initial pH for mycelial growth and exo-polymer production was 5.0 and 6.0, respectively. The optimum temperature was $25^{\circ}C$ and the optimum inoculum content was 3.0% (v/v). The optimal carbon and nitrogen sources were glucose and corn steep powder, respectively. After 12 days fermentation under these conditions, the highest mycelial growth was 18.0 g/l and the highest exo-polymer production was 3.9 g/l.

Pseudomonas sp. Endo-1,4-$\beta$-Glucanase와 $\beta$-1,4-Glucosidase 유전자의 대장균 및 효모에서의 동시 발현 (Simultaneous Expression of Pseudomonas sp. Endo-1,4$\beta$-Glucanase and $\beta$-1,4=Glucisidase Gene in Escherichia coli and Saccharomyces cerevisiae)

  • 김양우;전성식;정영철;성낙계
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.652-658
    • /
    • 1995
  • We attempted simultaneous expression of genes coding for endoglucanase and $\beta $-glucosidase from Pseudomonas sp. by using a synthetic two-cistron svstem in Escherichia coli and Saccharomyces cerevisiae. Two-cistron system, 5'--tac promoter-endoglucanase gene--$\beta $-glucosidase gene-- 3', 5'-tac promoter--$\beta $-glucosidase gene--endoglucanase gene--3' and 5'-tac promoter--endoglucanase gene--SD sequence--$\beta $-glucosidase gene--3, were constructed, and expressed in E. coli and S. cerevisiae. The E. coli and S. cerevisiae contained two-cistron system produced simultaneously endoglucanase and $\beta $-glucosidase. The recombinant genes contained the bacterial signal peptide sequence produced low level of endoglucanase and $\beta $-glucosidase in S. cerevisiae transformants: Approximately above 44% of two enzymes was localized in the intracellular fraction. The production of endoglucanase and $\beta $-glucosidase in veast was not repressed in the presence of glucose or cellobiose. The veast strain contained recombinant DNA with two genes hydrolyzed carboxvmethyl cellulose, and these endoglucanase and $\beta $-glucosidase degraded CMC synergistically to glucose, cellobiose and oligosaccharide. This result suggests the possibility of the direct bioconversion of cellulose to ethanol by the recombinant yeast.

  • PDF

Effects of Combination of Nitrate with ${\beta}$1-4 Galacto-oligosaccharides and Yeast (Candida kefyr) on Methane Emission from Sheep

  • Sar, C.;Santoso, B.;Gamo, Y.;Kobayashi, T.;Shiozaki, S.;Kimura, K.;Mizukoshi, H.;Arai, I.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권1호
    • /
    • pp.73-79
    • /
    • 2004
  • The objective of the present study was to determine whether ${\beta}$1-4 galacto-oligosaccharides (GOS) and Candida kefyr combined with nitrate as manipulators could suppress rumen methanogenesis without nitrate poisoning in sheep. Four rumen fistulated wethers were allocated to a $4{\times}4$ Latin square design. Nitrate (1.3 g $NaNO_3$ $Kg^{-0.75}$body weight) with and without GOS and Candida kefyr were administered into the rumen through fistula as a single dose 30 min after the morning meal. GOS and Candida kefyr were supplemented by sprinkling onto the feed and through rumen fistula, respectively. The four treatments consisted of saline, nitrate, nitrate plus GOS and nitrate plus GOS plus Candida kefyr. Physiological saline was used as the control treatment. Compared to saline treatment, the administration of nitrate alone resulted in a very marked decrease in rumen methanogenesis and an increase in rumen and plasma nitrite production and blood methaemoglobin formation consequently causing a decline in oxygen consumption, carbon dioxide production and metabolic rate. When compared to nitrate alone, the simultaneous administration of nitrate with GOS decreased nitrite accumulation in rumen and plasma and nitrate-induced methaemoglobin, while retaining low methane production. However, GOS could not fully restore metabolic parameters reduced by nitrate. When compared to the simultaneous administration of nitrate with GOS, the simultaneous administration of nitrate with GOS plus Candida kefyr lowered rumen methanogenesis to a negligible level, but did not decrease rumen and plasma nitrite accumulation as well as blood methaemoglobin formation. Thus, these results suggest that combination of nitrate with GOS may be a potent manipulator to suppress rumen methanogenesis with abating the hazards of nitratenitrite toxicity in ruminants.

Effect of Increased Glutamate Availability on L-Ornithine Production in Corynebacterium glutamicum

  • Hwang, Joong-Hee;Hwang, Gui-Hye;Cho, Jae-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.704-710
    • /
    • 2008
  • Glutamate availability in the argF-argR-proB${\Delta}$ strain of Corynebacterium glutamicum was increased by addition of glutamate to the cell or inactivation of the phosphoenolpyruvate carboxykinase activity and simultaneous overexpression of the pyruvate carboxylase activity to assess its effect on L-ornithine production. When glutamate was increased in an L-ornithine-producing strain, the production of L-ornithine was not changed. This unexpected result indicated that the intracellular concentration and supply of glutamate is not a rate-limiting step for the L-ornithine production in an L-ornithine-producing strain of C. glutamicum. In contrast, overexpression of the L-ornithine biosynthesis genes (argCJBD) resulted in approximately 30% increase of L-ornithine production, from 12.73 to 16.49 mg/g (dry cell weight). These results implied that downstream reactions converting glutamate to L-ornithine, but not the availability of glutamate, is the rate-limiting step for elevating L-ornithine production in the argF-argR-proB${\Delta}$ strain of C. glutamicum.