• Title/Summary/Keyword: simultaneous identification

Search Result 205, Processing Time 0.032 seconds

The Identification of Limiting Nutrients Using Algal Bioassay Experiments (ABEs) in Boryeong Reservoir after the Construction of Water Tunnel

  • Ku, Yeonah;Lim, Byung Jin;Yoon, Jo-Hee;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.558-566
    • /
    • 2018
  • The objective of the study was to determine nutrition regime and limitation in the Boryeng Reservoir where there's a water tunnel between Geum River and the reservoir. Evaluation was conducted through in situ algal bioassay experiments (in situ ABEs) using the cubitainer setting in the reservoirs. For in situ ABEs, we compared and analyzed variations in chlorophyll-a (CHL-a) and phosphorus concentrations in Boryeong Reservoir before and after the water tunnel construction. We then analyzed the nutrient effects on the reservoir. Analysis for nitrogen and phosphorus was done in the three locations of the reservoir and two locations of the ABEs. The in situ ABEs results showed that phosphorous and Nitrogen, the primary limiting nutrient regulating the algal biomass was not limited in the system. The treatments of phosphorus or simultaneous treatments of N+P showed greater algal growth than in the control of nitrate-treatments, indicating a phosphorus deficiency on the phytoplankton growth in the system. The water from the Geum River had 5 times higher total phosphorus (TP) than the water in the reservoir. Efficient management is required as pumping of the river water from Geum River may accelerate the eutrophication of the reservoir.

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend;Ansah, Iris Baffour;Park, Sung Gyu;Kim, Dong-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.342-352
    • /
    • 2022
  • Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.

Block-based Self-organizing TDMA for Reliable VDES in SANETs

  • Sol-Bee Lee;Jung-Hyok Kwon;Bu-Young Kim;Woo-Seong Shim;Dongwan Kim;Eui-Jik Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.511-527
    • /
    • 2024
  • This paper proposes a block-based self-organizing time-division multiple access (BSO-TDMA) protocol for very high frequency (VHF) data exchange system (VDES) in shipborne ad-hoc networks (SANETs). The BSO-TDMA reduces the collisions caused by the simultaneous transmission of automatic identification system (AIS) messages by uniformly allocating channel resources using a block-wise frame. For this purpose, the BSO-TDMA includes two functional operations: (1) frame configuration and (2) slot allocation. The first operation consists of block division and block selection. A frame is divided into multiple blocks, each consisting of fixed-size subblocks, by using the reporting interval (RI) of the ship. Then, the ship selects one of the subblocks within a block by considering the number of occupied slots for each subblock. The second operation allocates the slots within the selected subblock for transmitting AIS messages. First, one of the unoccupied slots within the selected subblock is allocated for the periodic transmission of position reports. Next, to transmit various types of AIS messages, an unoccupied slot is randomly selected from candidate slots located around the previously allocated slot. Experimental simulations are conducted to evaluate the performance of BSO-TDMA. The results show that BSO-TDMA has better performance than that of the existing SOTDMA.

Characterization, detection and identification of transgenic chili pepper harboring coat protein gene that enhances resistance to cucumber mosaic virus

  • Seo, Sang-Gyu;Kim, Ji-Seong;Jeon, Seo-Bum;Shin, Mi-Rae;Kang, Seung-Won;Lee, Gung-Pyo;Hong, Jin-Sung;Harn, Chee-Hark;Ryu, Ki-Hyun;Park, Tae-Sung;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.384-391
    • /
    • 2009
  • Previously, two events (H15 and B20) of transgenic pepper (Capsicum annuum L.) that enhanced resistance to Cucumber mosaic virus (CMV) by the introduction of CMV coat protein (CP) gene were constructed. Presently, a single copy number of the CP gene was revealed in H15 and B20 by Southern blot. To predict possible unintended effects due to transgene insertion in an endogenous gene, we carried out sequencing of the 5'-flanking region of the CP gene and a Blastbased search. The results revealed that insertion of the transgene into genes encoding putative proteins may occur in the H15 and B20 transgenic event. Mutiplex polymerase chain reaction (PCR) for simultaneous detection and identification of transgenic pepper was conducted with a set of nine primers. Both transgenic event were differentiated from non-transgenic event by the presence of 267 bp and 430 bp PCR products indicative of CP gene specific primer pairs and primer pairs targeting the CP gene and 35S promoter. H15 and B20 uniquely possessed a 390 bp and 596 bp PCR product, respectively. The presence of a 1115 bp product corresponding to intrinsic pepper actin gene confirmed the use of pepper DNA as the PCR template. The primer set and PCR conditions used presently may allow the accurate and simple identification of CMV resistant transgenic pepper.

Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of Cine Loop, Phase Analysis and Paradox Image - (ECG Gated Blood Pool Scan을 이용한 심실벽 역행성 운동의 평가 - Cine Loop, Phase Analysis, Paradox Image의 비교 -)

  • Lee, Jae-Tae;Kim, Gwang-Weon;Jeong, Byeong-Cheon;Lee, Kyu-Bo;Whang, Kee-Suk;Chae, Sung-Chul;Jeon, Jae-Eun;Park, Wee-Hyun;Lee, Hyong-Woo;Chung, Jin-Hong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.24 no.2
    • /
    • pp.244-253
    • /
    • 1990
  • Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows: 1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were ischemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5). pericardial effusion(5), post cardiac surgery(3), col pulmonale (2), endocarditis(1) and right ventricular tumor(1). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion(p<0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipultion respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical molies in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image-is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  • PDF

Adaptive RFID anti-collision scheme using collision information and m-bit identification (충돌 정보와 m-bit인식을 이용한 적응형 RFID 충돌 방지 기법)

  • Lee, Je-Yul;Shin, Jongmin;Yang, Dongmin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.1-10
    • /
    • 2013
  • RFID(Radio Frequency Identification) system is non-contact identification technology. A basic RFID system consists of a reader, and a set of tags. RFID tags can be divided into active and passive tags. Active tags with power source allows their own operation execution and passive tags are small and low-cost. So passive tags are more suitable for distribution industry than active tags. A reader processes the information receiving from tags. RFID system achieves a fast identification of multiple tags using radio frequency. RFID systems has been applied into a variety of fields such as distribution, logistics, transportation, inventory management, access control, finance and etc. To encourage the introduction of RFID systems, several problems (price, size, power consumption, security) should be resolved. In this paper, we proposed an algorithm to significantly alleviate the collision problem caused by simultaneous responses of multiple tags. In the RFID systems, in anti-collision schemes, there are three methods: probabilistic, deterministic, and hybrid. In this paper, we introduce ALOHA-based protocol as a probabilistic method, and Tree-based protocol as a deterministic one. In Aloha-based protocols, time is divided into multiple slots. Tags randomly select their own IDs and transmit it. But Aloha-based protocol cannot guarantee that all tags are identified because they are probabilistic methods. In contrast, Tree-based protocols guarantee that a reader identifies all tags within the transmission range of the reader. In Tree-based protocols, a reader sends a query, and tags respond it with their own IDs. When a reader sends a query and two or more tags respond, a collision occurs. Then the reader makes and sends a new query. Frequent collisions make the identification performance degrade. Therefore, to identify tags quickly, it is necessary to reduce collisions efficiently. Each RFID tag has an ID of 96bit EPC(Electronic Product Code). The tags in a company or manufacturer have similar tag IDs with the same prefix. Unnecessary collisions occur while identifying multiple tags using Query Tree protocol. It results in growth of query-responses and idle time, which the identification time significantly increases. To solve this problem, Collision Tree protocol and M-ary Query Tree protocol have been proposed. However, in Collision Tree protocol and Query Tree protocol, only one bit is identified during one query-response. And, when similar tag IDs exist, M-ary Query Tree Protocol generates unnecessary query-responses. In this paper, we propose Adaptive M-ary Query Tree protocol that improves the identification performance using m-bit recognition, collision information of tag IDs, and prediction technique. We compare our proposed scheme with other Tree-based protocols under the same conditions. We show that our proposed scheme outperforms others in terms of identification time and identification efficiency.

Study on the Possibility of Quantitative Measurement of Abdominal Examinations in Korean Medicine - A Focus on Diagnosis of Abdominal Coldness in Functional Dyspepsia Patients - (한의 복진 정량화 연구 - 기능성 소화불량 환자의 복냉 진단을 중심으로 -)

  • Lee, Jae-hong;Cho, Soo-ho;Ko, Seok-jae;Kim, Jin-sung;Park, Jae-woo
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.495-510
    • /
    • 2018
  • Objective: This study was designed to investigate the possibility of quantification of the diagnosis of abdominal coldness (AC) in patients with functional dyspepsia (FD). Methods: Forty-four patients with FD were enrolled in this study. Three Korean medicine doctors each randomly examined all abdomens. Diagnosis of AC was made by consensus of at least two of the doctors. Body temperature (oral by digital oral thermometer) and skin temperature (by digital infrared thermal imaging [DITI]) were measured, followed by administration of the Cold and Heat questionnaire (CHQ) and the Instrument of Pattern Identification for Functional Dyspepsia (IPIFD). Results: Of the 44 patients with FD, 22 were assigned to the AC group and 22 to the non-AC group. The concordance rate of diagnosis among the three doctors was 63.6% (28/44), with a ${\kappa}$ of 0.504, indicating means moderate agreement). Neither the oral nor the skin temperatures showed statistically significant differences between the AC and non-AC groups. However, the CHQ scores and 'Simultaneous Occurrence of Cold and Heat Syndromes pattern' scores of the IPIFD were higher in AC group and showed statistically significant differences (p=0.010 and 0.009). Conclusions: This is the first study conducting quantitative measurements of abdominal coldness in patients with FD. Although oral and skin temperature showed no statistical significance between AC and non-AC groups, the concordance rate of diagnosis of AC among the three Korean Medicine doctors was moderate. The CHQ scores and 'Simultaneous Occurrence of Cold and Heat Syndromes pattern' scores of the IPIFD also suggest that diagnosis of AC is relevant to cold and heat patterns, and these questionnaires could be utilized as supportive data for the diagnosis of AC. Further studies should be conducted for the purpose of quantifying and standardizing abdominal examinations in Korean Medicine.

Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation

  • Wang, Laiyou;Guo, Shuxian;Zeng, Bo;Wang, Shanshan;Chen, Yan;Cheng, Shuang;Liu, Bingbing;Wang, Chunyan;Wang, Yu;Meng, Qingshan
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.66-78
    • /
    • 2022
  • The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.

Transcriptional Regulation of a DNA Repair Gene in Saccharomyces cerevisiae

  • Jang, Yeon-Kyu;Sancar, Gwen-B.;Park, Sang-Dai
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.113-113
    • /
    • 1998
  • In Saccharomyces cerevisiae UV irradiation and a variety of chemical DNA -damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of DNA -damage inducible genes is PHRI, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHRI require an upstream activation sequence, UASPHRI. Here we report the identification of the UlvIE6 gene of S. cerevisiae as a regulator of UASPHRl activity. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHRI is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UNIE6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHRI mRNA, and increases the UV sensitivity of a rad2 mutant. The results suggest that UM E6 contributes to the regulated expression of a subset of damage-responsive genes in yeast. Furthermore, the upstream repression sequence, URSPHRI, is required for repression and damage-induced expression of PHRl. Here we show identification of YER169W and YDR096W as putative regulators acting through $URS_{PHRI}$. These open reading frames were designated as RPHI (YERl69W) and RPH2 (YDR096W) indicating regulator of PHRI. Simultaneous disruption of both genes showed a synergistic effect, producing a four-fold increase in basal level expression and a similar decrease m the induction ratio following treatment of methyl methanesulfonate(MMS). Mutation of the sequence ($AG_4$) bound by Rphlp rendered the promoter of PHRI insensitive to changes in RPHI or RPH2 status. The data suggest that RPHI and RPH2 act as damage-responsive negative regulators of PHRI. Surprisingly, the sequence bound by Rphlp in vitro is found to be $AG_4$ which is identical to the consensus binding site for the regulators Msn2p and Msn4p involved in stress-induced expression. Deletion of MSN2 and MSN4 has little effect on the induction$.$ ratio following DNA damage. However, all deletions led to a significant decrease in basal-level and induced expression of PHRI. These results imply that MSN2 and MSN4 are positive regulators of P HRI but are not required for DNA damage repression. [Supported by grant from NIH]om NIH]

  • PDF

Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry

  • Dong, Wei-Wei;Zhao, Jinhua;Zhong, Fei-Liang;Zhu, Wen-Jing;Jiang, Jun;Wu, Songquan;Yang, Deok-Chun;Li, Donghao;Quan, Lin-Hu
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.540-547
    • /
    • 2017
  • Background: In general, after Panax ginseng is administered orally, intestinal microbes play a crucial role in its degradation and metabolization process. Studies on the metabolism of P. ginseng by microflora are important for obtaining a better understanding of their biological effects. Methods: In vitro biotransformation of P. ginseng extract by rat intestinal microflora was investigated at $37^{\circ}C$ for 24 h, and the simultaneous determination of the metabolites and metabolic profile of P. ginseng saponins by rat intestinal microflora was achieved using LC-MS/MS. Results: A total of seven ginsenosides were detected in the P. ginseng extract, including ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. In the transformed P. ginseng samples, considerable amounts of deglycosylated metabolite compound K and Rh1 were detected. In addition, minimal amounts of deglycosylated metabolites (ginsenosides Rg2, F1, F2, Rg3, and protopanaxatriol-type ginsenosides) and untransformed ginsenosides Re, Rg1, and Rd were detected at 24 h. The results indicated that the primary metabolites are compound K and Rh1, and the protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides. Conclusion: This is the first report of the identification and quantification of the metabolism and metabolic profile of P. ginseng extract in rat intestinal microflora using LC-MS/MS. The current study provided new insights for studying the metabolism and active metabolites of P. ginseng.