• Title/Summary/Keyword: simultaneous equation

Search Result 233, Processing Time 0.027 seconds

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

Three Dimensional Medical Image Rendering Using Laplace's Equation (라플라스 방정식의 해를 이용한 삼차원 의학 영상 랜더링)

  • Kim, S.M.;Ahn, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2918-2920
    • /
    • 2000
  • A new multi-planar interpolation technique for three dimensional medical image rendering is proposed. In medical imaging. resolution in the slice direction is usually much lower than those in the transverse planes. The proposed method is based on the solution of the Laplace's equation used in the electrostatics. In this approach. two contours in the source and destination planes for a given object is assumed to have equi-potentials. Some preprocessing and post-processing including scaling. displacement. rotation from the centers of mass are involved in the algorithm. The interpolation solution assumes mostly smoothing changes in between the source and destination planes. Simultaneous multiple interpolation planes are inherently obtained in the proposed method. Some experimental and simulation results are shown.

  • PDF

A Study on the Dynamic Load Model of Truss Bridge subjected to Moving Train Loads (열차하중을 받는 트러스교의 동적하중모형 연구)

  • 안주옥;박상준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.111-118
    • /
    • 1996
  • Dynamic load models which show the practical behavior of truss bridge subjected to moving train load are presented. Three basically approaches are available for evaluating structural response to dynamic effects : moving force, moving mass, and influence moving force and mass. Simple warren truss bridge model is selected in this research, and idealized lumped mass system, modelled as a planar structure. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of truss bridge and moving train load. The solution of the uncoupled equations of motion is solved by Newmark-$\beta$ method. The results show that dynamic response of moving mass and static analysis considering the impact factor specified in the present railway bridge code was nearly the same. Generally, the dynamic response of moving force is somewhat greater than that of moving mass. The dynamic load models which are presented by this study are obtained relatively adequate load model when apply to a truss bridge.

  • PDF

Grid-Enabled Parallel Simulation Based on Parallel Equation Formulation

  • Andjelkovic, Bojan;Litovski, Vanco B.;Zerbe, Volker
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.555-565
    • /
    • 2010
  • Parallel simulation is an efficient way to cope with long runtimes and high computational requirements in simulations of modern complex integrated electronic circuits and systems. This paper presents an algorithm for parallel simulation based on parallelization in equation formulation and simultaneous calculation of matrix contributions for nonlinear analog elements. In addition, the paper describes the development of a grid interface for a parallel simulator that enables a designer to perform simulations on distant computer clusters. Performances of the developed parallel simulation algorithm are evaluated by simulation of a microelectromechanical system.

Dynamic Analysis of Vehicle-Bridge System by the Dynamic Condensation Method (Dynamic Condensation Method를 이용한 차량-교량계의 동적해석)

  • Han, Jae-Ik;Lee, Kyeong-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.177-184
    • /
    • 1998
  • The equation of motion on the vehicle-bridge system is established as the simultaneous equations which are combined the equation of vehicle and bridge by the interaction elements. A vehicle element is modeled as lumped masses supported by springs and dashpots, and a bridge element with pavement roughness is modeled as beam elements. An interaction element is defined to consist of a bridge element and the suspension units of the vehicle resting on the element. By the dynamic condensation method, the degrees of the freedom are eliminated, and compared with all the degrees of freedom on the bridge, the efforts of calculation is decreased. Thus, although a very small computational error is occured, the present technique appears to be computationally more efficient. It is particularly suitable for the simulation of bridges with a series of vehicles moving on the deck.

  • PDF

Pipe Network Analysis by Using Frontal Solution Method (Frontal 기법을 이용한 상수관망의 흐름해석 모형)

  • 박재홍;한건연
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.141-150
    • /
    • 1996
  • Steady state analysis of pressure and flow in water supply piping systems is a problem of great importance in hydraulic engineering. The basic equations consist of continuity equation and energy equation. The network equations are solved iteratively by using linear solution method. The resulting linear simultaneous equations are solved by frontal method. Frontal method, which is suitable to sparse matrix, gathers only non-zero entries in coefficient matrix. The suggested methodology can analyze faster than the existing routines by using smaller computer memory. The model presented in this study shows accurate and efficient results for various piping systems.

  • PDF

Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss (비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석)

  • ;;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

Analysis of Heavy Water Separation Cascade Using Bithermal ${H_2}$/$H_2$O Exchange Process

  • Ahn, Do-Hee;Paek, Seung-Woo;Lee, Han-Soo;Hongsuk Chung;Masami Shimizu
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.571-576
    • /
    • 1996
  • The 3-stage cascade composed of the multisection-type bithermal $H_2$/$H_2O$-exchange columns was suggested for heavy water separation. In order to study the separation characteristics for the cascade, a matrix equation with 18 simultaneous equations was composed and the concentrations and flow rates were calculated for the all parts of the cascade. Product D-concentration decreases and extraction yield increases with increasing cut in each stage, which is one of the principal parameters of the separation characteristics. The optimization of the 3-stage cascade can be made by case study using the matrix equation.

  • PDF

Estimation of Site Index and Stem Volume Equations for Larix leptolepis Stand in Jinan, Chonbuk (전북 진안 낙엽송 임분의 지위지수 및 간재적식 추정)

  • Jeon, Byung-Hwan;Lee, Sang-Hyun;Lee, Young-Jin;Kim, Hyun;Kang, Hag-Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.40-47
    • /
    • 2007
  • The objectives of this study were to derive site index and stem volume prediction equation based on stem analysis data for Larix leptolepis in Jinan region. The function for site index was developed by algebraic difference equation method. Polymorphic site index family curves with base age of 40 were presented based on the Schumacher height equation. The best stem volume prediction equation was suggested as $V=0.00260+0.00000399D^2H$. The simultaneous F-test using this equation showed that the estimated tree stem volumes were not significantly different (${\alpha}=0.05$ level) from the observed stem volumes for model evaluation. Therefore, site index and volume prediction equations prepared in this study could provide an indication of site quality and basic information for making of yield table, and could be used for rational forest management of Larix leptolepis stands grown in Jinan region.

An Adjoint Variable Method for Eigenproblem Design Sensitivity Analysis of Damped Systems (감쇠계 고유치문제의 설계민감도해석을 위한 보조변수법)

  • Lee, Tae Hee;Lee, Jin Min;Yoo, Jung Hoon;Lee, Min Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1527-1533
    • /
    • 2005
  • Three methods for design sensitivity analysis such as finite difference method(FDM), direct differentiation method(DDM) and adjoint variable method(AVM) are well known. FDM and DDM for design sensitivity analysis cost too much when the number of design variables is too large. An AVM is required to compute adjoint variables from the simultaneous linear system equation, the so-called adjoint equation. Because the adjoint equation is independent of the number of design variables, an AVM is efficient for when number of design variables is too large. In this study, AVM has been extended to the eigenproblem of damped systems whose eigenvlaues and eigenvectors are complex numbers. Moreover, this method is implemented into a commercial finite element analysis program by means of the semi-analytical method to show applicability of the developed method into practical structural problems. The proposed_method is compared with FDM and verified its accuracy for analytical and practical cases.