• Title/Summary/Keyword: simulation of dam operation

Search Result 70, Processing Time 0.028 seconds

Water Supply Change Outlook for Geum River Basin Considering RCP Climate Change Scenario (RCP 기후변화 시나리오를 고려한 금강유역의 미래 용수공급 변화전망)

  • No, Sun-Hee;Jung, Kwan Sue;Park, Jin Hyeog;Ryoo, Kyong Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.505-517
    • /
    • 2013
  • In this study, water supply for Geum River Basin was calculated by regulating the future water supply of Dam with the future expected discharges. HadGEM2-AO, which is the climate change prediction model that KMA (Korea Meteorological Administration) recently introduced was used for this study. The data of weather stations within the Geum River basin was extracted with the new Greenhouse Gas RCP scenario. The runoff of Geum river basin was simulated using the ArcSWAT for the 1988~2010 period. After validating the model, the similarity of results between simulation and observation at the Yongdam Dam and Daecheong Dam was 92.25% and 95.40%, respectively, which shows a good agreement with observed data. As the result of analysis for the discharges, the discharges would increase 47.76% under the RCP4.5 scenario and 36.52% under the RCP8.5 scenario. Water balance analysis was conducted by the KModSim for predicting the water supply under the runoff variation. We analyzed the volume of water intake with national standard of water supply 95% by Dam Operation Manual. By the analysis under RCP4.5 scenario, $9.41m^3/s$, $24.82m^3/s$ of additional water supply is available on Yongdam Dam and Daecheong Dam. By the analysis under the RCP8.5 scenario, $6.48m^3/s$, $21.08m^3/s$ of additional water supply is available on Yongdam Dam and Daecheong Dam.

Modeling of Water Temperature in the Downstream of Yongdam Reservoir using 1-D Dynamic Water Quality Simulation Model (1차원 동적수질모형을 활용한 용담댐 하류하천의 수온변동 모의)

  • Noh, Joonwoo;Kim, Sang-Ho;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.356-364
    • /
    • 2010
  • The chemical and biological reaction of the aquatic organism is closely related with temperature variation and water temperature is one of the most important factors that should be considered in establishing sustainable reservoir operation scheme to minimize adverse environmental impacts related with dam construction. This paper investigates temperature variation in the downstream of Yongdam Reservoir using sampled data collected from total 8 temperature monitoring stations placed along the main river and the major tributaries. Using KoRiv1, 1-dimensional dynamic water quality simulation model, temperature variation in the downstream of Yongdam Reservoir has been simulated. The simulated results were compared with sampled data collected from May 15 to August 1 2008 by applying two different temperature modeling schemes, equilibrium temperature and full heat budget method. From the result of statistical analysis, seasonal temperature variation has been simulated by applying the equilibrium temperature scheme for comparison of the difference between the reservoir operation and the natural conditions.

Development of Reservoir Operation Model using Simulation Technique in Flood Season(II) (모의기법에 의한 홍수기 저수지 운영 모형 개발(II))

  • Sing, Yong-Lo;Maeng, Sung-Jin;Ko, Ick-Hwan;Lee, Hwan-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.797-805
    • /
    • 2002
  • The EV ROM, a joint reservoir operation model for flood control that accounts for the downstream flow condition, has been introduced in the preceding article (Shin et al, 2000). A joint reservoir operation model computer program for the Geum river basin, developed by FORTRAN Power Station 4.0 using the EV ROM, is hereby presented. Three case studies of flood control by joint operation of the Yongdam and Daechung Multipurpose Dams in the Geum river basin revealed that the performance of the EV ROM was superior to the existing Rigid ROM and Technical ROM. This is because the EV ROM can account for the downstream flow condition as well as the upstream inflow and the reservoir water level. In order to apply for various floods events in the future, consistent improvement of the developed EV ROM and efforts for more accurate rainfall prediction are required.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I

  • Pham, Thanh Dam;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.980-992
    • /
    • 2019
  • This paper describes a model test and numerical simulation of a 750-kW-semi-submersible platform wind turbine under several wind and wave conditions for validation of the numerical simulation model. The semi-submersible platform was designed to support the 750-kW-wind turbine class and operate at a water depth of 50 m. The model tests were performed to estimate the performance characteristics of the wind turbine system in the wide tank of the University of Ulsan. Motions and loads of the wind turbine system under the wind and wave conditions were measured and analyzed. The NREL-FAST code was used to simulate the wind turbine system, and the results were compared with those of the test model. The results demonstrate that the numerical simulation captures noticeably the fully coupled floating wind turbine dynamic responses. Also, the model shows a good stability and small responses during waves, wind, and operation of the 750-kW-floating offshore wind turbine.

Two-Dimensional Hydrodynamic and Water Quality Simulations for a Coinjunctive System of Daecheong Reservoir and Its Downstream (대청호와 하류하천 연속시스템의 2차원 수리·모의)

  • Jung, Yong Rak;Chung, Se Woong;Ryu, In Gu;Choi, Jung Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.581-591
    • /
    • 2008
  • Most of our rivers are fragmented by the presence of at least one large dam. Dams are often the most substantial controller of the flow regimes and aquatic environments of natural river system. The quality of downstream water released from a stratified reservoir is highly dependent on upstream reservoir water quality. Thus, an integrated modeling approach is more efficient, compared to fragmented modeling approach, and necessary to better interpret the impact of dam operation on the down stream water quality. The objectives of this study were to develop an integrated reservoir-river modeling system for Daecheong Reservoir and its downstream using a two-dimensional laterally averaged hydrodynamic and water quality model, and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using filed data obtained in 2004 and 2006. The model showed satisfactory performance in predicting temporal variations of water stage, temperature, and suspended solid concentration. In addition, the reservoir-river model showed efficient computation time as it took only 3 hours for one year simulation using personal computer (1.88 Ghz, 1.00 GB RAM). The suggested modeling system can be effectively used for assisting integrated management of reservoir and river water quality.

Drought Monitoring with Indexed Sequential Modeling

  • Kim, Hung-Soo;Yoon, Yong-Nam
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.125-136
    • /
    • 1997
  • The simulation techniques of hydrologic data series have develped for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etc. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in the western USA since the early of 1980s. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and autoregressive, order-1 model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF

An Investigation on Input Filter Design for Matrix Converters

  • Nguyen, Huu-Nhan;Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.178-179
    • /
    • 2017
  • Input filter is an essential component in a practical matrix converter (MC) system to generate the sinusoidal input currents. However, the input filter causes a displacement angle between the input current of MC and the source current. In this paper, we investigate the input filter design for MCs by considering the displacement angles of the input current and the input voltage to guarantee high input power factor (IPF) operation as well as low input current harmonic contents. Simulation results are provided to validate the input filter design with near unity input power factor and low total harmonic distortion (THD) of the input current.

  • PDF

Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend (계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF

Deriving Robust Reservoir Operation Policy under Changing Climate: Use of Robust Optimiziation with Stochastic Dynamic Programming

  • Kim, Gi Joo;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.171-171
    • /
    • 2020
  • Decision making strategies should consider both adaptiveness and robustness in order to deal with two main characteristics of climate change: non-stationarity and deep uncertainty. Especially, robust strategies are different from traditional optimal strategies in the sense that they are satisfactory over a wider range of uncertainty and may act as a key when confronting climate change. In this study, a new framework named Robust Stochastic Dynamic Programming (R-SDP) is proposed, which couples previously developed robust optimization (RO) into the objective function and constraint of SDP. Two main approaches of RO, feasibility robustness and solution robustness, are considered in the optimization algorithm and consequently, three models to be tested are developed: conventional-SDP (CSDP), R-SDP-Feasibility (RSDP-F), and R-SDP-Solution (RSDP-S). The developed models were used to derive optimal monthly release rules in a single reservoir, and multiple simulations of the derived monthly policy under inflow scenarios with varying mean and standard deviations are undergone. Simulation results were then evaluated with a wide range of evaluation metrics from reliability, resiliency, vulnerability to additional robustness measures. Evaluation results were finally visualized with advanced visualization tools that are used in multi-objective robust decision making (MORDM) framework. As a result, RSDP-F and RSDP-S models yielded more risk averse, or conservative, results than the CSDP model, and a trade-off relationship between traditional and robustness metrics was discovered.

  • PDF

A Study on Improvement Effect of voice information transmission using Auralization at the hydraulic turbine dynamo room in Dam (가청화를 이용한 댐 수차 발전기실의 음성정보전달 개선효과에 관한 연구)

  • Kook, Joung-Hun;Ju, Duck-Hoon;Jung, Eun-Jung;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.263-267
    • /
    • 2007
  • Even though Waterpower Generation as pollution-free has its own merit of contribution by supply of good quality electricity, due to the noise made at the time of its operation, a normal mutual communication among the workers and technicians engaging at the hydraulic turbine dynamo room is almost impossible, and since those finishing materials had been used mainly by reflection material, it is actual situation that when working for maintenance in the hydraulic turbine dynamo room, as counterpart's voice vibrates, its working efficiency is difficult to ensure. On such view point, this Research has conducted Psycho-acoustics Experiment about voice Definition using Auralizational Technique, on the object for the hydraulic turbine dynamo room that improved its acoustic performance by computer simulation. As the result of Study, it was known that the clearness of sound with regard to voice information transmission was apparently improved in all items than before improvement. Therefore, it is considering that these results would be utilized usefully when renovation on the hydraulic turbine dynamo room in the future.

  • PDF