• Title/Summary/Keyword: simulated imagery

Search Result 43, Processing Time 0.025 seconds

Topographic Mapping Using KOMPSAT Imagery

  • Lee, Ho-Nam;Seo, Hyun-Duck;Jung, Hyung-Sup
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.786-791
    • /
    • 2002
  • Mapping systems using Satellite Imagery has not been well-established compare to conventional Arial Photograph mapping systems. In order for satellite imagery to produce a stable quality of maps, it requires to follow the standard mapping procedures. In this satellite imagery study, we proposed four methods of mapping procedures. Mapping methods were established by generating trial maps and analyzing types of input data and functions of DPW (Digital Photogrammetric Workstation). On quantitative aspect, accuracy of each steps were measured by increasing 2 GCPs each time from the minimum of 6 GCPs. In DLT, with the minimum of 10 points, RMSE is 2 pixels at most. Besides that, interpretation and stereoscopic plotting using KOMPSAT-1 imagery and other simulated imagery was performed. The tests resulted that, for KOMPSAT-1 (6.6m) stereoscopic images, the possibility of interpretation is 44.79% and possibility of stereoscopic plotting is 43.75%. In the other hand, for simulated imagery (1m), the possibility of interpretation is 60.92% and possibility of stereoscopic plotting is 55.18%.

  • PDF

Simulated Radiances of the OSMI over the Oceans

  • Lim, Hyo-Suk;Kim, Yong-Seung;Lee, Dong-Han
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.43-48
    • /
    • 1998
  • Prior to launch, simulated radiances of the Ocean Scanning Multispectral Imager (OSMI) will be very useful to guess the real imagery of OSMI and to check the data processing system for OSMI. The data processing system for OSMI which is one sensor of Korea Mult i - Purpose Satellite (KOMPSAT) scheduled for launch in 1999 is being developed based on the SeaWiFS Data Analysis System (SeaDAS). Such a simulation should include the spectral bands, orbital and scanning characteristics of the OSMI and KOMPSAT spacecraft. The simulation is also very helpful for finding and preparing for problem areas before launch. This paper describes a method to create simulated radiances of the OSMI over the oceans. Our method for constructing a simulated OSMI imagery is to propagate a KOMPSAT orbit over a field of Coastal Zone Color Scanner (CZCS) pigment values and to use the values and atmospheric components to calculate total radiances. A modified Brouwer - Lyddane model with drag was used for the realistic orbit prediction, the CZCS pigment data were used to compute water - leaving radiances, and a variety of radiative transfer models were used to calculate atmospheric contributions to total radiances detected by OSMI. Imagery of the simulated OSMI total radiances for 6 nominal bands was obtained. As expected, water - leaving radiances were only a small fraction of total radiances and sun glint contaminations were observed near the solar declination. Therefore, atmospheric correction is very important in the calculation of pigment concentration from total radiances. Because the imagery near the sun's glitter pattern is virtually useless and must be discarded, more advanced mission planning will be required.

  • PDF

Estimation of Simulated Radiances of the OSMI over the Oceans (대양에서의 OSMI 모의 복사량 산출)

  • 임효숙;김용승;이동한
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.227-238
    • /
    • 1999
  • In advance of launch, simulated radiances of the Ocean Scanning Multispectral Imager (OSMI) will be very useful to guess the real imagery of OSMI and to prepare for data processing of OSMI. The data processing system for OSMI which is one of sensors aboard Korea Multi-Purpose Satellite (KOMPSAT) scheduled for launch in 1999 is developed based on the SeaWiFS Data Analysis System (SeaDAS). Simulation of radiances requires information on the spectral band, orbital and scanning characteristics of the OSMI and KOMPSAT spacecraft. This paper also describes a method to create simulated radiances of the OSMI over the oceans. Our method for constructing a simulated OSMI imagery is to propagate a KOMPSAT orbit over a field of Coastal Zone Color Scanner (CZCS) pigment concentrations and to use the values and atmospheric components for calculation of total radiances. A modified Brouwer-Lyddane model with drag was used for the realistic orbit prediction, the CZCS pigment concentrations were used to compute water-leaving radiances, and a variety of radiative transfer models were used to calculate atmospheric contributions to total radiances detected by OSMI. Imagery of the simulated OSMI radiances for 412, 443, 490, 555, 765, 865nm was obtained. As expected, water-leaving radiances were only a small fraction (below 10%) of total radiances and sun glint contaminations were observed near the solar declination. Therefore, atmospheric correction is critical in the calculation of pigment concentration from total radiances. Because the imagery near the sun's glitter pattern is virtually useless and must be discarded, more advanced data collection planning will be required to succeed in the mission of OSMI which is consistent monitoring of global oceans during three year mission lifetime.

Radiometric Characteristics of Geostationary Ocean Color Imager (GOCI) for Land Applications

  • Lee, Kyu-Sung;Park, Sung-Min;Kim, Sun-Hwa;Lee, Hwa-Seon;Shin, Jung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.277-285
    • /
    • 2012
  • The GOCI imagery can be an effective alternative to monitor short-term changes over terrestrial environments. This study aimed to assess the radiometric characteristics of the GOCI multispectral imagery for land applications. As an initial approach, we compared GOCI at-sensor radiance with MODIS data obtained simultaneously. Dynamic range of GOCI radiance was larger than MODIS over land area. Further, the at-sensor radiance over various land surface targets were tested by vicarious calibration. Surface reflectance were directly measured in field using a portable spectrometer and indirectly derived from the atmospherically corrected MODIS product over relatively homogeneous sites of desert, tidal flat, bare soil, and fallow crop fields. The GOCI radiance values were then simulated by radiative transfer model (6S). In overall, simulated radiance were very similar to the actual radiance extracted from GOCI data. Normalized difference vegetation index (NDVI) calculated from the GOCI bands 5 and 8 shows very close relationship with MODIS NDVI. In this study, the GOCI imagery has shown appropriate radiometric quality to be used for various land applications. Further works are needed to derive surface reflectance over land area after atmospheric correction.

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

Adaptive Parametric Estimation and Classification of Remotely Sensed Imagery Using a Pyramid Structure

  • Kim, Kyung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.1
    • /
    • pp.69-86
    • /
    • 1991
  • An unsupervised region based image segmentation algorithm implemented with a pyramid structure has been developed. Rather than depending on thraditional local splitting and merging of regions with a similarity test of region statistics, the algorithm identifies the homogenous and boundary regions at each level of pyramid, then the global parameters of esch class are estimated and updated with values of the homogenous regions represented at the level of the pyramid using the mixture distribution estimation. The image is then classified through the pyramid structure. Classification results obtained for both simulated and SPOT imagery are presented.

Monitoring of Graveyards in Mountainous Areas with Simulated KOMPSAT-2 imagery

  • Chang, Eun-Mi;Kim, Min-Ho;Lee, Byung-Whan;Heo, Min
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1409-1411
    • /
    • 2003
  • The application of simulated KOMPSAT-2 imagery to monitor graveyards is to be developed. Positions calculated from image were compared with those obtained from Geographic Positioning System. With 24 checkpoints, the position of graveyards showed within 5-meter range. Unsupervised classification, supervised classification, and objected-orientation classification algorithms were used to extract the graveyard. Unsupervised classification with masking processes based on National topographic data gives the best result. The graveyards were categorized with four types in field studies while the two types of graveyards were shown in descriptive statistics. Cluster Analysis and discriminant analysis showed the consistency with two types of tombs. It was hard to get a specific spectral signature of graveyards, as they are covered with grasses at different levels and shaded from the surrounding trees. The slopes and aspects of location of graveyards did not make any difference in the spectral signatures. This study gives the basic spectral characteristics for further development of objected-oriented classification algorithms and plausibility of KOMPSAT-2 images for management of mountainous areas in the aspect of position accuracy and classification accuracy.

  • PDF

A Comparative Study of Geocoding Methods for Radarsat Image - According to the DEM Resolutions - (Radarsat 영상의 기하보정 방법에 대한 비교 연구 - DEM 해상도에 따라 -)

  • 한동엽;박민호;김용일
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.69-82
    • /
    • 1998
  • SAR imagery can overcome the limitations of electro-optical sensor imagery and provide us Information which plays a supplementary role. But it is necessary to remove a variety of geometric errors in SAR imagery. An accurate geometric correction of SAR imagery is not easy task to achieve, though some techniques and theories are introduced. We also have difficulties such as transformation problem between 'International' ellipsoid in Radarsat system and 'Bessel' ellipsoid. Two widely used correction method, one is made by simulated image, and the other by collinearity equation, usually use DEM. In this study, the merits and demerits of geocoding methods respectively and the effective method for Korean terrain were found.

KOMPSAT Data Processing System: Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.331-336
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the Korea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed and archived. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

  • PDF

Specific Material Detection with Similar Colors using Feature Selection and Band Ratio in Hyperspectral Image (초분광 영상 특징선택과 밴드비 기법을 이용한 유사색상의 특이재질 검출기법)

  • Shim, Min-Sheob;Kim, Sungho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1081-1088
    • /
    • 2013
  • Hyperspectral cameras acquire reflectance values at many different wavelength bands. Dimensions tend to increase because spectral information is stored in each pixel. Several attempts have been made to reduce dimensional problems such as the feature selection using Adaboost and dimension reduction using the Simulated Annealing technique. We propose a novel material detection method that consists of four steps: feature band selection, feature extraction, SVM (Support Vector Machine) learning, and target and specific region detection. It is a combination of the band ratio method and Simulated Annealing algorithm based on detection rate. The experimental results validate the effectiveness of the proposed feature selection and band ratio method.