~ Journal of the Korean Society of Remote Sensing, Vol.7, No.1, 1991

Adaptive Parametric Estimation and Classification
of Remotely Sensed Imagery Using a Pyramid Structure

Kyungsook Kim
Systems Engineering Research Institute
(Received Feb. 1, 1991; Accepted Feb. 10, 1991)

Abstract

An unsupervised region based image segmentation algorithm implemented with a pyra-
mid structure has been developed. Rather than depending on traditional local splitting
and merging of regions with a similarity test of region statistics, the algorithm identifies
the homogenous and boundary regions at each level of pyramid, then the global parame-
ters of each class are estimated and updated with values of the homogenous regions re-
presented at that level of the pyramid using the mixture distribution estimation. The
image is then classified through the pyramid structure. Classification results obtained for
both simulated and SPOT imagery are presented.

I. Introduction

The earth resources observation satellites, such as Thematic Mapper and SPOT acquire im-
agery at high spatial and temporal resolution, thereby providing a huge number of data points
to be analyzed. With the current interest in problems associated with global change, it is now
necessary to analyze data from large regions over a long time history. Therefore, a reduction in
the number of operations performed on each high resolution image is required. In many applica-
tions it is desired to segment and classify the regions of an image either as a means of data
compression or as an end product for analysis.

If the objects or regions of interest are relatively large compared to the pixel size, then the
prob-ability of the groups of contiguous pixels being in the same class is much greater than the
probability of being in different classes(spatial redundancy). For large homogeneous interior re-

gions, it may not be necessary to process all the pixels to identify the class label of that region.
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More pixels are needed to identify the exact boundary only for areas near the boundaries be-
tween two or more classes. By identifying homogeneous interior regions without analyzing the
responses of all the pixels and rather concentrating on boundaries, the number of operations and
computational cost can be reduced. One means of efficiently implementing this idea involves a

multilevel approach which can be applied naturally through a pyramid structure [Figure 1).
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Figure 1. The Pyramid Data Structure.

The concept of unsupervised region based image segmentation has been employed in a new al-
gorithm. It does not, however, depend on the traditional local merging and splitting of regions
based on similarity tests of region statistics. Instead, global parameters of each class are esti-
mated and updated with representative values of the classes using the mixture distribution tech-
nique. The image is then classified through a pyramid structure. Unlike traditional region based
approaches, this new approach is based on global estimators and does not have ordering prob-
lems with merging of regions.

The concept of unsupervised region based image segmentation has been employed in a new
algorithm. It does not, however, depend on the traditional local merging and splitting of regions
based on similarity tests of region statistics. Instead, global parameters of each class are esti-

mated and updated with representative values of the classes using the mixture distribution tech-
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nique. The image is then classified through a pyramid structure. Unlike traditional region based
approaches, this new approach is based on global estimators and does not have ordering prob-
lems with merging of regions.

The algorithm has been applied to both simulated data and multispectral SPOT imagery. Classi-

fication results are reported for a variety of patterns and noise characteristics.

I. Background

The algorithm developed in this paper utilizes results from statistical estimation theory and

from multiresolution data structures.

A. Image Segmentation with Multiresolution Structures

Traditionally, image segmentation techniques with multiresolution structure are developed
with either the quadtree or the pyramid structure.

Image segmentation with the quadtree structure has been implemented through three differ-
ent approaches'?”: region merging or growing, region sphtting, and region split-merge. These ap-
proaches incorporate spatial information by merging only spatially adjacent regions and using
merging criteria based on region wide spatial features.

Pyramids provide successively condensed representations of the information in the whole
image. The most obvious advantage of the pyramid representation is that it provides the oppor-
tunity for reducing the computational cost of various image operations using ‘di-
vide and conquer’ principles.” Image segmentation with the pyramid structure has been devel-
oped through the pyramid node linking method.?

All these region based image segmentation approaches incorporate spatial information by
merging only spatially adjacent regions and using merging criteria based on region-wide spatial
features. Unfortunately, there are some common problems with these methods.!” Because the re-
gion merging process is sequential in nature, the ultimate aggregated regions depend on the
order in which regions are merged. Also, typical merging approaches often fail to find the best
merge match. The characteristics of regions can change during the region growth process. Sub-
regions that actually belong in the larger regions might be rejected in the early stages of the
merging or vice versa. Generally, since these approaches use only regional(local) information,

they all have the problem of lack of global information.
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B. Mixture Distribution Estimation

A parametric family of finite mixture distributions is of the from

p(x | ‘I,)zé pi(X | B1), X=Xz, **, Xn) ER crreverreresimireeniiiiee i 1)

ik

where each «; is nonnegative and Z]I,él a;=1, where each p; is a density function of x paramet-

rized by ¢; € 2.

B.1. Clustering Based on Mixture Distribution Estimation

The mixture distribution estimation model has been considered as a clustering® or unsuper-
vised learning problem?®. Since the clustering with mixture distributions is based on the likeli-
hood function of unordered data, it has the advantage of extracting infomation from all the
pixels regardless of their locations and avoiding the computation of all pairwise distances or
similarities.

The EM algorithm was adapted® ® in the estimation of mixture distributions. The general
properties of the EM algorithm ensure that the sequence of estimates of parameters converge to
the maximum likelihood estimates.

The mixture distribution estimation problem involves samples which are expressible as one or
a stochastically independent union of samples. of three distinct types.® In modeling a mixture
distribution, a sample observation of the mixture is labeled if its component density of origin is
known with certainty, otherwise it is unlabeled. The three types of samples are:

Type 1. Suppose that {x;};=1, ---, N is an independent sample of N unlabeled observations on
the mixture, 1. e., a set of N observations on independent, identically distributed random
variables with density p(x | *), where ®* is a set of parameters characterizing the mix-
ture distribution. Then S,={x;};=1, :-+, N is a sample of Type 1.

Type 2. Suppose that Jk, k=1, -, k are nonnegative integers and that, {yu}:=1, -+, Js is an in-
dependent sample of observations on the kth component population, i.e., a set of J; observa-

tions on independent, identically distributed random variables with density pi(x | ®*).
Then S;= Urgl {yu}i=1, -+, Jp is a sample of Type 2.

Type 3. Suppose that an independent sample of L unlabeled observations is drawn on the mix-
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ture, that these observations are subsequently labeled, and that, for k=1, ---, K, a set {zi}:

, Ly of them is associated with the kth component population with L= Z,'f 1 L& Then
S;= UK, {zx}i=1, -+, Ly is a sample of Type 3.

A totally unlabeled sample of S, of Type 1 is the sort of sample considered in general mixture

distribution problems. The major difference between two types of completely labeled samples S,

and S; of Type 2 and 3 is that the L; of Type 3 contains information about the mixing propor-
tions, while J; of Type 2 does not.

B.2. Maximum Likelihood Estimates of the General Mixture Distribution
Suppose that a set x={x), x,

x ,} of n independent samples is drawn independently from
the mixture distribution and the class or origin of each sample is not known,

K
p(x: | ¢I>)=I§ api(x: | 41)

-

where each ;=0, X, a;=1 and ®=(ay, **-ax, #1, *--¥x). The likelihood function is
k1 ‘

p(x|<I>)=f{ p(x.: 1)

where the parameter vector & is fixed but unknown. The log-likelihood of the observed
sample is

L= : log p( x;| ®)

The constraint Z‘I,:_l da;=1 is introduced via the Lagrange multiplier 2,
K
L¥*=L—2(3 a;—1)
k1

Assuming that p(x | ®) is differentiable wrt @,
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where V is a partial derivative. Multiplying (1) by a; and summing over k gives
n—A=0

The posterior probability of the occurrence of the kth class is

(xi|¢k) akpk(xi|¢k)
(k| x)="2PR 21 00) _ __BPRZiIP8) e 3
pkl %) p(x| ®) Zlkilakpk(xi|¢k) ®
Multipling (1) by a4, the maximum likelihood estimate a; of a is

&k;(l/n)é: DUE | T ) correerreertre ettt @)

i.e. the maximum likelihood estimate of the mixing proportion for class k is given by the sample
mean of the conditional probabilities that x; comes from class k. (2) can be expressed in terms of

the posterior probability

ép(k | 2 )Vh 10gi( T i | B) =0 -oveerrevreemmmemmiiiirtt ettt (5)

The maximum likelihood equations for estimating the parameters ¢; are then a weighted
average of the maximum likelihood equations from each component considered separately. The
weight for the ith sample is an estimate of how likely it is that x; belongs to the kth cdmponent.

Analytic solutions can not be obtained in general for (4) and (5), so they must be solved ap-

proximately via some type of iterative computational procedure. If the EM algorithm” is used,

and ¢'=(ay, -, ag,#1, -+, #g) is the maximizer of the log likelihood function of rth itera
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tion, then the next approximate maximizer ®*'=(a[*!, ---, a5, 471, .o, ¢ 1F1) satisfies

1 = a;pk(xi|¢;)
aptt=—
e CAL 3

. noa,pxi|d;)
7 € max o ZWI%M(MIM

for k=1, ---, K. Note that each weight a; p:( x| ¢} )/p(x,|®") is the posterior probability
that x; originated in the kth component, given the current approximate maximumlikelihood esti-

mate @". This general model can be applied to d-dimensional multivariate normal populations.

B.3. Si(Unlabeled) Samples only

Consider the multivariate normal mixture distribution,

(x| 8)=N{uy 20 k=1,2, - K
pe(x | 61) = WMZ— exp{—~1/2(x— p,)'Z; " (x— o))

where ¢i=(u, 24, k=1, ---, K. From (4) and (5) of Section 2. 4. 3

n

1 .
ar_—? p(k | x2)

=1

vykIngk(xi | ¢k):2k—l (xi_ﬂk)

S0

= ?:1 i’(klxi)xi
' ?:1 i’(k | X3)

51,2 Zh Bk %) (49 (ki )"
' D



8 Journal of the Korean Society of Remote Sensing, Vol. 7, No. 1, 1991
The maximum likelihood estimates can be found directly from the EM algorithm.
B.4. Union of S; and S;(Labeled and Unlabeled) Samples

This case is the union of labeled and unlabeled samples. The labeled samples contribute to esti-

mation of mixing proportions because of the proportion information contained in the labeled ob-

servations. Suppose that
L={zg5:k=1, -, K, i=1, +-+, Lg}

is available, where zy, *+-, zy are from observations in component k.
Lik com= Lik tabetted LiK uniceied

K
> apr(xi | #0

k=

fos

K L
=1 T awpezu| 60
k=1 i=1

T
_
-

Ly n
Vi Loom= 4_‘:'1 Vi logpr(zs | ¢k)+§ p(k | )V logpi(xi | 68

where Lom=log Likom.

1 n K
U= {Lk+i§1,‘ p(k | xi)} where g,; Li=L

. Zh T a ] xdx
M= .
' Li+ 2%, (k| x)

5 T G p ) @e— ud'+ I8 bk | x) (= a0 (xi— i)'
' L+ T8, p(k| x)

Il. Structure of Algorithm
A. Definition of Types of Regions and Decision Categories

Three types of regions, R, , ; and associated decision categories are required at any particular
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level of the process, where i, j denotes the region location at level L. Regions are designated as

a) Unspecified homogéneous. A region R, , ;1s said to be unspecified homogeneous if it is
composed of a class unknown to the procedure at that level, or something other than one of
the K classes which are recognized at a particular level.

b) Specified homogeneous: A region R, ; ,1s said to be specified homogeneous if it 1s com-
posed entirely of only one of the K classes which are recognized at a particular level.

¢) Boundary. A region R, j, ; is said to be boundary if it is composed of more than one class
at a particular level.

The segmentation procedure therefore requires the following decisions for a given region R, ; /.

a) At a particular level, it must be determined whether R, , ; is a homogeneous or boundary
region.

b) If R, , :is a homogeneous region, then R, , ,is labeled with one of the K known classes or
as an unknown class.

c) If R, , :1s a boundary region, then next finer resolution level is considered.
B. Construction of the Multiresolution Pyramid Structure

The full resolution image, 2™ by 2", is placed on the bottom level of the pyramid(level 0). To
define the reduced-resolution versions of the image, an exponentially tapering ‘pyramid’ of
arrays of sizes 2™ ' by 2™}, 2" 2 by 2%, ---, 4 by 4 and 2 by 2 is used, so that the lth level has
size 2™ ! by 2™ !, Each node in the pyramid is indexed by a triple(i, j, I), where [ is its array
level and i and j are its row and column numbers. Two kinds of pyramids, non-overlapping
average pyramid and SSCP pyramid, are constructed. The SSCP pyramid is constructed to
carry the variability of regions.

C. The Homogeneity Test of Unlabeled Regions, R; ;.

Detection of homogeneous regions is a critical part of the algorithm. At each level, the homo-
geneity tests are performed to determine whether a region falls in the interior of a class or lies
on the boundary between classes. These homogeneous regions are then treated as a combined
sample for the estimation of parameters.

The homogeneity test in this algorithm is actually implemented using following series of
hypotheses:

H,. R, , :1s composed of one class.
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H;: R, , :entirely belongs to one of the known classes.

H,. R, , :is composed of more than one class.
It is important to note that under hypothesis Hj, the class characteristics are not known, while
under the hypothesis H,, the class characteristics are known. The homogeneity of a region is de-
termined from the following tests.

Test 1" Hy versus H,, to differentiate the homogeneous regions from the boundary regions.

Test 2: H; versus H, to differentiate the homogeneous regions belonging to the previously

known classes from the boundary regions.
Test 1 involves a homogeneity test of a region, which has four subregions at a particular

level. It simply tests whether a region comes from the interior region of one class. Test 2 is a
membership homogeneity test, which tests whether the unlabeled subregion R:-" ii—1 belongs en-

tirely to one of the previously known classes.
Statistical tests are used for these homogeneity tests, where it is assumed that pdx | i) is

multivariate normal, Nz, 235).

C.1. Test 2: Four-Subregion Homogeneity Test

The purpose of the four-subregion homogeneity test is to identify the very ‘homogenequs’ re-
gions not lying on the boundary regions at the top level, L. At each level, each region consists of
four equal sized subregions. To decide whether a region, R, ; ; 1s homogeneous, both equality of
covariance matrices and equality of mean vectors of the four subregions are tested. Only re-
gions which pass both tests are considered as homogeneous at this level. The parameters are
then estimated with using data from these homogeneous regidns. The test statistics can be easily
and efficiently calculated with the non-overlapping average and SSCP pyramid.

For the test of equality of covariance matrices of four subregions, the y? test is used. If some
of the classes have the same covariance matrices, the equality test of covariance matrices is not
adequate to detect the homogeneity of a region. Therefore, the equality test of mean vectors is
applied to the regions which pass the equality of covariance test. The y* test is used for the

multivariate test of equality of mean vectors.

C.2. Test 2. Membership—-Homogeneity Test v
After the parameters are reestimated with projected labeled regions at level I(detailed in F)

these parameters are used to test the membership of unlabeled regions at the same level, . An

unlabeled region R}‘, ;1 at level [ can be tested to determine whether it belongs to one of the pre-
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viously recognized classes or lies on the boundary of the classes.

First, a test of a membership of class to an unlabeled region R:.f il is performed using the pa-
rameter values at level, [. Because of the averaging effect of the pyramid, the variability of a re-
gion has not been considered. Therefore, the test of SSCP of a region is performed to check the
variability of a region against the variability of each class.

The y? test is used in order to test whether an unclassified region R:f i belongs to one of the

previously recognized classes. For a region which passes the membership test for one of the
known classes, k, the SSCP of an unlabeled region is compared the X5 | (see G) of the known
class, k to determine whether it is homogenous or falls in the boundary of more than one class.
The y? test is used.

The regions which pass both tests for one of the known classes are considered homogeneous

and included in the estimation of parameters.
D. Estimation of Parameters at Level, /

Parameters are estimated for the homogenous regions using the EM iteration method.

At the top level, L, the homogeneous regions are identified with four-subregions homogeneity
test. Case 1 estimation 1Is used for the totally unlabeled homogenous regions. Since the variability
is averaged out though the pyramid structure and only homogeneous regions are included to the
estimation, the classes are more separated. Therefore, convergence is rapid and accurate esti-

mates can be obtained.”

From level L—1 to level 1, where the labeled regions, Rf’ ;1 are available from the previous
level, these regions can be utilized in the estimation of parameters. These labeled regions are
combined with the newly identified homogeneous regions at this level for the estimation. Case 3
estimation i1s used for updating the parameters. The labeled regions not only provide good initial

values for the estimation, but also result in an increased convergence rate and improved esti-

mates.
E. Labeling at Level 1
After the parameters of each class have been estimated and updated; the homogeneous re-

gions are labeled with the class which gives the maximum posterior probability. A label of a

class map, C, j, ;is obtained by observing
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(X j 1 | 68)
Z‘,{( api(xy 51| 42

which is the posterior probability that x, ; ; comes from class k.
F. Projection to Level, -1

After the homogeneous regions are labeled on the basis of the estimated parameters at level
the label map and homogeneity map are projected to the next lower level, I-1. The mean vec-
tors, covariance matrices and class proportions of each class are reestimated with all the classi-

fied regions at level I-1. The loss of variability of regions due to the pyramid structure can be

recovered with this projection and reestimation at lower levels. Let xi , be the mean value of

Lc

a region classfied into class kand SS;_; be the SSCP of a region classified into class k at

level I-1.
a Lk
by 1=
lec(=l Tk
1 2
=— 22X
Hb -1 e 1:21 k-1
1 + < ’
Zk,z—l——n;[f‘( S — e =) (X e )]

, 1
Thi1 == [XSS;o +nY (x{ ;) e (X] 1y —#p )]

where n; is the number of regions classified into class k£ and n is the number of pixels in a region

at level [-1.
G. Optional Extensions

Once a region is identified as homogeneous and labeled at a higher level, the homogeneity and
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class label of a region are carried to the bottom level of the pyramid. The algorithm does not
have a systematic way to correct the Type— I error of homogeneity test or the mislabeling of a

regions at the higher level of the pyramid. Optional tests have been implemented to handle this

problem.

G.1. Back-homogeneity Test at level, [

A homogeneity test is applied to the previously labeled regions to correct the Type— 1 errors.
At level I, after the class parameters are updated with the previously labeled regions and newly
included homogeneous regions, the updated parameters are used for the membership-homogene-
ity test of the previously labeled regions.

For regions of class label, k, the membership of the region is tested with the updated parame-
ters of class, k. If it fails the test, a label of that region is deleted from the label and homogene-
ity maps, and the class parameters are adjusted accordingly. The test provides the algorithm the
chance to define the boundaries more accurately. However, it may also give a more noisy classi-

fied image.

G.2. Relabeling at level, |
Since the class parameters are updated through the pyramid structure, there should be the ca-
pability to change the class label of a region which is labeled at a higher level. If relabeling is
allowed at each level with updated parameters, it gives a more accurate label of a region corre-
sponding to the updated class parameters. Unfortunately, the advantage of region labeling is es-

sentially completely lost. However, it still has the advantage of reduction of data operations for

the purpose of estimation.

IV. Application and Evaluation of the Algorithm
A. Application of Algofithm to Simulated Data

The new adaptive parametric estimation and classification algorithm with pyramid structure
was implemented and tested on simulated images with a variety of characteristics. Two and
three class 64 X 64 images with two noise covariance structures were simulated. In Case A, the
classes were fairly well separated, each class had same variance structure, and channels were

not correlated. The images in Case B had classes which were poorly separated, each class had a
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different variance structure, and the channels were correlated(Table 1). The performance of

the algorithm was evaluated using the total misclassification error rate.

Table 1. Parameters of 2 Simulated Cases of 2 Class and 3 Class Images with 2 Channels

Class Case u(d, k) 2(d, d)
5 7 1.0 0.0 1.0 0.0
Case A (8) (10) (oo 10) (00 10)
2 Class 5 7 20 07 23 10
s | O () | (B
9 12 0.7 2.5 1.0 3.5
(5) (7) (9) (1.0 0.0) (1.0 0.0)
Case A 8 10 12 0.0 1.0 0.0 1.0
. ( 1.0 0.0)
3 Class 0.0 L0
(5) ( 7) (9) (2.5 1.1) (2.0 0.7)
12 15 1.1 3.0 . .
Case B s 07 25
(2.5 1.0 )
1.0 3.5/

The algorithm was run on two patterns of two and three class images. Bayes’ classification
was performed for comparison of the misclassification errors. As a supervised method, the true
parameter values were used instead of selecting training sets from the image. Therefore, the
results from the Bayes’ classification were the best that could be possibly be obtained.

The multivariate statistical tests were performed at a=0.1 for the homogeneity test of each
level. The misclassification errors were considerably smaller than for Bayes’ classification(Table
2) The average of reduction in misclassification errors compared to the corresponding Bayes’
classification errors of Cases A and B were 0.24 percent and 0.23 percent respectively. The al-
gorithm performed particularly well in the homogenous regions. In Case B, the high variability
of each class, the differing variance structure and correlation between channels resulted in more

misclassification errors than Case A.

Table 2. Comparison of Misclassification rate of Bayes classifier and Algorithm(at ¢=0.1)

(%)
Class Classifier Case A Case B
50l Bayes’ Classifier 7.91 16.47
ass Algorithm 2.07 4.33
Bayes’ Classifier 10.99 22.15
3 Class -
Algorithm 2.49 4.68
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Table 3 shows the reduction in data operations from using the pyramid structure. It shows
the reduction of data operations for Case A of the three class pattern. The dimension of the
original image, at level 0, was 64 X 64. It was reduced to 8 X8 at level 3. The algorithm started
at level 3, where the total number of regions was 64. 34 of 64(53 percent)were recognized as
homogeneous regions at level 3, and these regions were included for estimation and classified.
At level 2, those 34 regions were projected and 67 regions were newly included as homogeneous
regions. 79 percent of the image was classifed at this level. At level 1, 91 percent of the image

‘and at level 0, the whole image was classified.

Table 3. The Number of Data Operations at Each Level
3 Classes, Case A

. Classified
#of Nodes Projected Newly Included
# (percent)
level 3 64 0 34 34(53)
level 2 256 136 67 203(79)
level 1 1024 812 120 932(91)
level O 4096 3728 368 4096(100)

B. Implementation of Algorithm on SPOT Date

The new algorithm was implemented and tested on a study area (256 x256) in a SPOT
image located between Weslaco and Edcouch/Elsa, Texas. The enhanced true color images
(using red, green, blue color components) of June 4, 1989, are displayed in Figure 2.

The new algorithm was run on the original three band image. The classification results were
evaluated using qualitative analysis. The algorithm was run on the image with 8 classes. The ho-
mogeneity tests failed for a lot of regions because of the spatial dependency due to the high spa-
tial resolution.

To recover from errors in the homogeneity tests at higher levels, the algorithm with “back-ho-
mogeneity” test was run on the images. The “back-homogeneity” test helped to define more de-
tailed boundaries of the agriculture fields. The algorithm with “relabeling” was also run on the
images to adjust the class labels corresponding updated the class parameters [Figure 3). The
classified images with: “relabeling” are displayed with RGB color components. The mean value
of each class was substituted to each band. The classified images with “relabeling” showed

strong resemblence to the original images.
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Figure 2. The SPOT enhanced image of June 4, 1989 in Weslaco, Texas.

V. Conclusions and Recommendations

This study concentrated on development of a computationally efficient classification algorithm
implemented with the pyramid structure. Unlike traditional region based image segmentation
approaches with multiresolution structures, which depend on local merging and splitting of re-
gions based on the similarity of neighboring regions, this algorithm identifies the homogenous
and boundary regions at each level of the pyramid using region statistics. The global parameters
of each class are estimated based on values of the homogeneous regions represented at that
level of the pyramid using mixture distribution estimation. These estimated parameters are im-
plicitly used as a merging criterion of homogeneous regions. Therefore, in addition to achieving
computational efficiency with a multilevel approach, this algorithm overcomes the problems of
ordering of merging regions and the lack of global information of region based image segmenta-

tion approaches.
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Figure 3. Classified Image of June 4, 1989 in Weslaco, Texas.

The statistical tests are developed under the assumption that the observations are samples of
random variables which are normally and independently distributed. The statistical tests are vul-
nerable to any violation of these assumptions. Nonparametric test can be considered if the nor-
mality assumption is to be relaxed.” However, both parametric and nonparametric tests require
the assumption of independence of samples. The randomization test® could be considered for the
case where assumption of independence is violated.

The estimation procedure used by the algorithm assumes the normality of the data. Usually
for large amounts of data, the normality can be assumed safely. However, the estimation proce-
dure could be modified to handle estimation of nonparametric probability density, such as

Parzen density estimation.”
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