• Title/Summary/Keyword: simulated annealing(SA)

Search Result 181, Processing Time 0.027 seconds

Automatic Parameter Tuning for Simulated Annealing based on Threading Technique and its Application to Traveling Salesman Problem

  • Fangyan Dong;Iyoda, Eduardo-Masato;Kewei Chen;Hajime Nobuhara;Kaoru Hirota
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.439-442
    • /
    • 2003
  • In order to solve the difficulties of parameter settings in SA algorithm, an improved practical SA algorithm is proposed by employing the threading techniques, appropriate software structures, and dynamic adjustments of temperature parameters. Threads provide a mechanism to realize a parallel processing under a disperse environment by controlling the flux of internal information of an application. Thread services divide a process by multiple processes leading to parallel processing of information to access common data. Therefore, efficient search is achieved by multiple search processes, different initial conditions, and automatic temperature adjustments. The proposed are methods are evaluated, for three types of Traveling Salesman Problem (TSP) (random-tour, fractal-tour, and TSPLIB test data)are used for the performance evaluation. The experimental results show that the computational time is 5% decreased comparing to conventional SA algorithm, furthermore there is no need for manual parameter settings. These results also demonstrate that the proposed method is applicable to real-world vehicle routing problems.

  • PDF

A DFT and QSAR Study of Several Sulfonamide Derivatives in Gas and Solvent

  • Abadi, Robabeh Sayyadi kord;Alizadehdakhel, Asghar;Paskiabei, Soghra Tajadodi
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.225-234
    • /
    • 2016
  • The activity of 34 sulfonamide derivatives has been estimated by means of multiple linear regression (MLR), artificial neural network (ANN), simulated annealing (SA) and genetic algorithm (GA) techniques. These models were also utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear -log (IC50) prediction. The results obtained using GA-ANN were compared with MLR-MLR, MLR-ANN, SA-ANN and GA-ANN approaches. A high predictive ability was observed for the MLR-MLR, MLR-ANN, SA-ANN and MLR-GA models, with root mean sum square errors (RMSE) of 0.3958, 0.1006, 0.0359, 0.0326 and 0.0282 in gas phase and 0.2871, 0.0475, 0.0268, 0.0376 and 0.0097 in solvent, respectively (N=34). The results obtained using the GA-ANN method indicated that the activity of derivatives of sulfonamides depends on different parameters including DP03, BID, AAC, RDF035v, JGI9, TIE, R7e+, BELM6 descriptors in gas phase and Mor 32u, ESpm03d, RDF070v, ATS8m, MATS2e and R4p, L1u and R3m in solvent. In conclusion, the comparison of the quality of the ANN with different MLR models showed that ANN has a better predictive ability.

A Study on AGV Steering Control using TDOF PID Controller (2자유도 PID 제어기를 이용한 AGV의 조향 제어에 관한 연구)

  • Lee, Gwon-Sun;Lee, Yeong-Jin;Son, Ju-Han;Lee, Man-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.241-248
    • /
    • 2000
  • Until now, all of the port goods are transported manually by container transporter in the port. Recently there are a lot of studies about unmanned vehicle driven automatically. In terms of the vehicle automation, the control of steering and velocity on vehicle systems is very important part in container transporter. In common sense, vehicle systems have lots of nonlinear parameters so we have many difficulties in designing the optimal controller of them. In this paper, we present a design of the TDOF PID controller using a hybrid schematic algorithm to control the steering system optimally. We used the single-track model to pre-test the designed controller before appling to AGV. We also used the ES(evolutionary strategy) and SA(simulated annealing) algorithms to construct the hybrid tuning algorithm for parameters of controller. Finally, we had the computer simulation to verify that our designed controller has better performance than the other one.

  • PDF

A Web-based Solver for solving the Reliability Optimization Problems (신뢰도 최적화 문제에 대한 웹기반의 Solver 개발)

  • 김재환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.127-137
    • /
    • 2002
  • This paper deals with developing a Web-based Solver NRO(Network Reliability Optimizer) for solving three classes of reliability redundancy optimization problems which are generated in series systems. parallel systems and complex systems. Inputs of NRO consisted in four parts. that is, user authentication. system selection. input data and confirmation. After processing of inputs through internet, NRO provides conveniently the optimal solutions for the given problems on the Web-site. To alleviate the risks of being trapped in a local optimum, HH(Hybrid-Heuristic) algorithm is incorporated in NRO for solving the given three classes of problems, and moderately combined GA(Genetic Algorithm) with the modified SA(Simulated Annealing) algorithm.

  • PDF

Tabu Search Heuristics for Solving a Class of Clustering Problems (타부 탐색에 근거한 집락문제의 발견적 해법)

  • Jung, Joo-Sung;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.3
    • /
    • pp.451-467
    • /
    • 1997
  • Tabu search (TS) is a useful strategy that has been successfully applied to a number of complex combinatorial optimization problems. By guiding the search using flexible memory processes and accepting disimproved solutions at some iterations, TS helps alleviate the risk of being trapped at a local optimum. In this article, we propose TS-based heuristics for solving a class of clustering problems, and compare the relative performances of the TS-based heuristic and the simulated annealing (SA) algorithm. Computational experiments show that the TS-based heuristic with a long-term memory offers a higher possibility of finding a better solution, while the TS-based heuristic without a long-term memory performs better than the others in terms of the combined measure of solution quality and computing effort required.

  • PDF

A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem

  • Abdelhafiez, Ehab A.;Alturki, Fahd A.
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • In solving the Job Shop Scheduling Problem, the best solution rarely is completely random; it follows one or more rules (heuristics). The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, and Tabu search, which belong to the Evolutionary Computations Algorithms (ECs), are not efficient enough in solving this problem as they neglect all conventional heuristics and hence they need to be hybridized with different heuristics. In this paper a new algorithm titled "Shaking Optimization Algorithm" is proposed that follows the common methodology of the Evolutionary Computations while utilizing different heuristics during the evolution process of the solution. The results show that the proposed algorithm outperforms the GA, PSO, SA, and TS algorithms, while being a good competitor to some other hybridized techniques in solving a selected number of benchmark Job Shop Scheduling problems.

MULTI-ITEM SHELF-SPACE ALLOCATION OF BREAKABLE ITEMS VIA GENETIC ALGORITHM

  • MAITI MANAS KUMAR;MAITI MANORANJAN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.327-343
    • /
    • 2006
  • A general methodology is suggested to solve shelf-space allocation problem of retailers. A multi-item inventory model of breakable items is developed, where items are either complementary or substitute. Demands of the items depend on the amount of stock on the showroom and unit price of the respective items. Also demand of one item decreases (increases) due to the presence of others in case of substitute (complementary) product. For such a model, a Contractive Mapping Genetic Algorithm (CMGA) has been developed and implemented to find the values of different decision variables. These are evaluated to have maximum possible profit out of the proposed system. The system has been illustrated numerically and results for some particular cases are derived. The results are compared with some other heuristic approaches- Simulated Annealing (SA), simple Genetic Algorithm (GA) and Greedy Search Approach (GSA) developed for the present model.

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

Image Security and Personal Identification using CGH and Phase Mask (CGH와 위상 마스크를 이용한 영상 보안 및 개인 인증)

  • 김종윤;박세준;김종찬;김철수;조웅호;김수중
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.958-961
    • /
    • 1999
  • A new image encoding and identification scheme is proposed for security verification by using CGH(computer generated hologram), random phase mask, and correlation technique. The encrypted image, which is attached to the security product, is made by multiplying QPH(quadratic phase hologram) using SA(simulated annealing) algorithm with a random phase function. The random phase function plays a role of key when the encrypted image is decrypted. The encrypted image could be optically recovered by 2-f system and automatically verified for personal identification. Simulation results show the proposed method cand be used for the reconstruction and the recognition of the encrypted. Image.

  • PDF

An Application of a Hybrid Genetic Algorithm on Missile Interceptor Allocation Problem (요격미사일 배치문제에 대한 하이브리드 유전알고리듬 적용방법 연구)

  • Han, Hyun-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • A hybrid Genetic Algorithm is applied to military resource allocation problem. Since military uses many resources in order to maximize its ability, optimization technique has been widely used for analysing resource allocation problem. However, most of the military resource allocation problems are too complicate to solve through the traditional operations research solution tools. Recent innovation in computer technology from the academy makes it possible to apply heuristic approach such as Genetic Algorithm(GA), Simulated Annealing(SA) and Tabu Search(TS) to combinatorial problems which were not addressed by previous operations research tools. In this study, a hybrid Genetic Algorithm which reinforces GA by applying local search algorithm is introduced in order to address military optimization problem. The computational result of hybrid Genetic Algorithm on Missile Interceptor Allocation problem demonstrates its efficiency by comparing its result with that of a simple Genetic Algorithm.