2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

Automatic Parameter Tuning for Simulated Annealing

based on Threading Technique and its Application to Traveling Salesman Problem

Fangyan Dong*, Eduardo Masato Iyoda*, Kewei Chen**, Hajime Nobuhara*, and Kaoru Hirota*
*Department of Computational Intelligence & Systems Science, Tokyo Institute of Technology
4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

¢-mail: {fydong, iyoda,nobuhara hirota} @hrt.dis.titech.ac.jp,

Abstract - In order to solve the difficulties of parameter
settings in SA algorithm, an improved practical SA
algorithm is proposed by employing the threading
techniques, appropriate software structures, and dynamic
adjustments of temperature parameters. Threads provide
a mechanism to realize a parallel processing under a
disperse environment by controlling the flux of internal
information of an application. Thread services divide a
process by multiple processes leading to parallel
processing of information to access common data.
Therefore, efficient search is achieved by multiple search
processes, different initial conditions, and automatic
temperature adjustments. The proposed methods are
evaluated, for three types of Traveling Salesman Problem
(TSP) (random-tour, fractal-tour, and TSPLIB test data)
are used for the performance evaluation. The
experimental results show that the computational time is
S5% decreased comparing to conventional SA algorithm,
furthermore there is no need for manual parameter
settings. These results also demonstrate that the proposed
method is applicable to real-world vehicle routing
problems.

1. Introduction

[t is well known that Simulated Annealing (SA) algorithm
is efficient and readily applicable for solving large-scale
Combinatorial Optimization Problems (COP) [1]. But in
many practical applications, the methods present some
limitations, e.g., the choice of the initial state and the initial
temperature may affect the accuracy of the final solution and
the operation cost required. Moreover, formal procedures to
define these parameters have not been established.

In order to solve the difficulties of parameter settings in SA
aigorithm, an improved practical SA algorithm is proposed
by employing the operating system threading techniques,
ar propriate software structures, and dynamic adjustments of
temperature parameters. Threads provide a mechanism to
realize a parallel processing under a disperse environment by
ccntrolling the flux of internal information of an application.
Thread services divide a process by multiple processes
leading to parallel processing of information to access

439

**chenkewei@nifty.com

common data. Therefore, the efficient search is achieved by
multiple search processes, different initial conditions, and
automatic temperature adjustments. The proposed methods
are evaluated, for three types of Traveling Salesman
Problems (TSP’s) (random-tour, fractal-tour, and TSPLIB test
data) are used for the performance evaluation.

In II, threading technique and its distributing calculation is
illustrated, and how to apply the advanced technique to
meta-heuristic for COP problems is presented. In III, the
property of SA algorithm is analyzed and an improved
Multi-threading SA with Multi-Start and Intellectual
Parameters Setting is proposed. In section IV, a variety of
data based on TSP is used to evaluate the proposed method.

II. Threading & Distributing Calculation

Threading technique is used to construct an advanced and
complexity software model in the filed of operating system.
How to make it into meta-heuristic algorithm to realize the
distributing calculation for practice solution is mentioned in
the followings.

A. Threading Models and Its Advantages

A multitasking operating system
divides the CPU's time between all running processes

L]

Task 1

Task 2 Task 3

(thread) (thread) {thread)

{ CPU Time with time slices >
T ool T T 1]

Fig.1 An overview of threads

In Fig.1, an overview of threads is depicted. A thread is a
process or a part of an application. Threads provide a way to

realize parallel processing under a disperse environment, by
controlling the flux of internal information of an application.
Thread services divide a large process in multiple processes,
leading to parallel processing of information. To access
common data, data access synchronization is possible.

A thread resembles a CPU task, for each Application
Interface (API), the CPU executes a thread for a periodical
time. As illustrated in Figure 2, according to the priority level
(real time, high priority, normal priority, idle priority), an
appropriate amount of time is allotted to CPU.

Threads can assign time process to the CPU, from minimal
units or substantial ones. Usually, a program is a single thread,
for various API this approach is sufficient.

Multithreading is a mechanism that divides a task in 2 or
more threads. The OS distributes CPU time in threads, so
multithreading requires more CPU time.

By making use of multithreading OS, the basis for fast,
good response algorithms can be implemented.

Main thread Main thread Work thread
S - [opemiont |
Initial Operation 2

Fre—
Operation [Operationi]
¢ Operation m-1
-
[End]
Single-thread Multi-threading
Fig.2 Single-thread and Multi-threading

B. Distributing Calculation with multi-threading

To improve practical meta-heuristics, splitting in work
thread (mainly heuristics search) and main thread (state
regulation and termination condition evaluation) is used.

Traditional N-step probabilistic search is divided into N/M

steps, in a way that M threads realize the search, resulting in a

more efficient and easy controllable method (Fig.2). The

main advantages are:

> Increased speed and CPU usage ratio.

» Since the application is composed of main thread and
small-scale work threads, parameter adjustment is
simple, and efficiency is increased.

> By instantaneously using the feedback information from
the work thread, a global improvement is assured.

» Due to its parallel computing property, it can be
implemented in multi-platform environment.

» Introducing threads and priority level control, for real
APl applications, a simple componentization and
efficient functions are possible

440

IIL. Improved SA with Multi-threading

In order to solve the difficulties of parameter settings in SA
algorithm, an improved practical SA algorithm is proposed
by employing the Operating System threading techniques,
appropriate software structures, and dynamic adjustments of
temperature parameters.

A. SA: Simulated Annealing Algorithm
Annealing algorithm is a stochastic optimization strategy
for solving the combinational optimization problem. It
simulates the experimental annealing procedure of metal or
glass to get a good enough solution.
There are two general phases in the annealing process: One
is the heating phase and another is the slowly cooling down

phase.

Feasible Solution: S§={S S}

Object Function: (C: S — R*

S eS,=C(S")=minC(S)), 'S, S

Procedure Simulated Annealing(S,,T;)
{S, : initial state, T, : parameter of temputer, C, =C(S,)}
) §:=8,; k=0 {S:currentstate}

(2) REPEAT

3) REPEAT

4 S, =generate(S);

%) [FCJ.SC' THEN §:=S;

6) ELSETIF accept(j,S) THEN §:=S ;

U UNTIL 'inner-loop stop criterion'
() T,,,=update(T,)"; k=k+1
(9) UNTIL 'final stop criterion'

Procedure accept (j,S)
@) TIF exp{—(C, —C")/kT,} > random(0,1)
(2) THEN accept =true

(3) ELSE accept = false

#: Téw/tr, 0<A<l1

Fig.3 Simulated Annealing Algorithm
Fig.3 shows the classical simulated annealing algorithm.

The main steps of the algorithm are summarized as:

(1). Suppose S is a randomly initiated solution of the
combinational optimization problems. Obtain the
highest temperature: TO.

(2). Let T=T0

(3). Randomly turn S to its neighboring state: S. Objective
value deviation: AH=H(S)-H(S)

(4). Determine whether § is accepted (i.e., S « S) or rejected

according to Metropolis probability:

15). Decrease the temperature gradually (e.g., T=T*0.8)

19). Go to step (3) until the temperature T is low enough or
lower than a threshold.

(7). Stop

The SA is the most efficient method for COP, and its
convergence is guaranteed.

In the implementation of the algorithm, the choice of initial
state solution (Sp) and initial temperature (7;) influence the
precision of the final solution. The fixed decreasing
coefficient is also not good for search proposes.

In real applications, the problem size can change daily,
necause of which it is difficult to guarantee good solutions
within a fixed operation cost. One of the objectives of our
research is the question of how to avoid the selection of S,
znd Ty,

Main thread Work thread

Anneal(T',S})

Start

| Getinitial ', T'; =1; =123 |
i |

LDo WorkThread' (T}, S!), i =1,2, 3} Anneal(T4,S%)
'\/ GetSuccessThread'(S,,S,), 1 =1,2,3 { Anmeal(T:, 51
1 s best ane of workthread' s :I]

Anneal(T'S')

o #€[0.1,09], i=12,3

Fig.4. Distributing SA with Multi-start & Parameter hiding

B. Multi-Start and Intellectual Parameters Setting

To respond to the demand for easy parameter adjustment
:nd fixed computational cost and, at the same time, to
preserve the precision of the final solution, some essential
conditions are necessary. Success of SA search depends on
many factors like clear covering of parameter resetting and
flexibility. Figure 4 shows the Improved Distributing SA
rtealized by multi-threading) with multi-start and parameter
tiding (intellectual adjustment).

The main steps of the IDSA algorithm are:

1), Set {Sf,Y:'} (i=1,2,3:=0) by randomly

solution and relative highest temperature.
2). Start SA work threads (i=1,2,3).
3). Get the feedback of success rate (S,) from work thread i.

4. S <—"——L~S as next new solution.

initiated

(5). If(S, <0.2)T. = uT ,elseT’ =T'asnew temperature.

(6). Go to step (2) until temperature: T' is low enough or
lower than a threshold.

(7). Stop

The properties of the improved SA are:

> With few SA search processes, as well as control and
distribution of multiple executions, an efficient search is
achieved.

> During the change of temperatures from high to low,
every state is uniformly preserved (SA internal process
and external main adjustment included), so that
temperature parameter is also automatically adjusted (in
the internal process, initialization is not necessary).

» Each annealing thread starts with a different initial
condition §;, resulting in better solutions.

» Each work thread has fixed calculation number to avoid
useless and duplication search (When S, is high, it can
continue at the same state).

IV. Experiment for Performance of IDSA
Two kinds of experiments have been done with the concepts
of Steadiness and Robustness.

A. Steadiness Defined by Meta-Algorithm

Under the conditions with fixed computational environment
(CPU type, memory, etc.) and limited operation cost (timer,
resource, etc.), the solution precision can be fixed invariably
above a reserved index (0.9 recommended). Then, the
meta-algorithm should be considered as the steadiness.

160
140 \
1(2)2 \ ------- Classic SA| |
\ . Thread SA
80 X -
60 \ "\‘
40 \ e
20 ~ T
0 1 . a2 ;
0s 10s 20s 30s 40s
Fig.5-1 City Number 300

Fig.5-1,2 show the results for Standard-SA and Thread-SA
with 300 and 500 city number. The steadiness and the fast
convergence are confirmed.

441

i
300
N e i e e ma .
250 \\ Classic SA !
200 \ Thread SA |
150 \\
50 ‘\M
0 ; ;
0s 10s 20s 30s 40s 50s
Fig.5-2 City Number 500

B. Robustness Defined by Meta-Algorithm

If the average test results are more than required precision
under the range variation (from 10% to 120%) of problem
scale N with specify computational environment and by using
all sorts of test data, then the meta-algorithm is able to
achieve the robustness.

BClassical SA
EThread SA

N=60 N=120 N=200 N=300 N=500

N=1000

Fig.6 Robustness Evaluation

Fig.6 shows search precision for Classical-SA and
Thread-SA with the cities number varied from 60 to 1000.
The robustness and a better result of Thread-SA are
confirmed.

V. Conclusions

Multi-threading technique is introduced and distributing
calculation is also mentioned for meta-heuristic algorithm.
Since the primary factors (high speed, high precision,
no-parameter, knowledge inference, and controllability) are
basic requirements for solving the real COP problem. How to
use various advanced software models into the
meta-heuristics algorithm and how to improve their
performances are important and interesting subjects.

The Algorithm called Improved Distributing SA4 is proposed
that is realized by multi-threading and multi-start and
parameter hiding (intellectual adjustment). The properties are
summarized as follows:

>

442

(1). Using thread technique, the search operations are
distributive, control-able and efficient.

(2). Using multi-start with a different initial condition, each
annealing thread can work well and result in better solutions.

(3). For the changes of temperatures from high to low, the
information got from finished work thread can be checked
and temperature parameter is intellectual adjusted to ler
thermostatic declining propose fast or low.

(4). Each work thread has fixed calculation number to avoid
useless and duplication search.

Based on the principles of steadiness and robustness,
experiments have been done to confirm the performance of
proposed algorithim. The results show that it is beiter than
classical one. The Thread-SA is also simplicity to construct
and distributed execution to increase calculation efficiency
and catch more intermediate information for intellectual
adjustment.

Meta-heuristics can be interpreted in a number of ways, but
basically they are tools (solving method, software structure,
techniques for practical application, performance evaluation
based) for finding good quality solutions by using limited
operation resources.

References

[1] Mutsunori Yagiura, Toshihide Ibaraki: On Meta-heuristic
Algorithms for Combinatorial Optimization Problem,
Asakura Publ. Co., pp.97-102, 2001.

[2] Kenneth D. Boese: Models for Iterative Global Optimization,
UCLA Computer Science Department, Ph.D. Thesis, 1996.

[3] J.L. Bentley, Experiments on traveling salesman heuristics, In
First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp.91-99, San Francisco, CA, January 1990.

[41S Kirkpatrick, C.D.Gelatt, Jr, and M.P. Vecchi:
Optimization by simulated annealing, Science, v0l.220,
pp.671-680, 1983.

[5] V.Cemy: Thermodynamical approach to the traveling
salesman problem: an efficient simulated annealing
algorithm, J.Optimization Theory and Applications,
vol.45, pp.41-51, 1985.

[6] Sadiq M. Salt, and habib Youssef : Iterative Computer
Algorithms with Applizations in Enginering Solving
Combinatorial Optimization Problem, Maruzhen Publ.
Co., pp.43-81, 2001.

[7] http://www.math.princeton.edu/tsp/

