• Title/Summary/Keyword: simplified design formula

Search Result 54, Processing Time 0.026 seconds

Simplified Formula for Simulating Overpressure Waves in Compressed-Water-Type Launching Device (압축수 방식 사출장치 내부 과도압력파 모의를 위한 간이 식)

  • Kim, Kookhyun
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.287-290
    • /
    • 2022
  • Compressed-water-type launching devices convert the force from compressed water into force-launching underwater structures, such as torpedos and autonomous underwater vehicles. In particular, the overpressure wave in the launching tube is a critical design factor for the launching device. This paper presents a simplified formula for simulating overpressure waves in the launching tube of a compressed-water-type launching device. Scaled model experiments were performed to obtain actual measurement data of overpressure waves in a launching tube with varying piston speeds to examine the practical applicability of the simplified formula. The main factor of the simplified formula was estimated using an optimization technique. The time history of the overpressure waves was satisfactorily simulated using the estimated factor values and showed consistency with the measurement data. In addition, the trend of change by the piston speed of the estimated factors was reviewed, and the practical applicability was demonstrated. A systematic study of the factors influencing the overpressure waves in launching tubes will be possible using experimental data for more various conditions and the proposed simplified formula.

Simplified design formula of slender concrete filled steel tubular beam-columns

  • Chung, Jinan;Matsui, Chiaki;Tsuda, Keigo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • The objective of this paper is to develop a simplified method that could predict the strength of concrete filled steel tube (CFT) columns applicable to high strength material under combined axial compression and flexure. The simplified method for determining the strength of CFT columns is based on the interaction curve of the section approached by a polygonal connection of the points. These points are determined by using symmetrical properties of the CFT section. For each point, a simple equation is proposed to determine the strength of the slender columns under compression and flexure. The simple equation was adjusted with results of elasto-plastic analysis results. Validation of the simplified method is undertaken by comparison with data from the test conducted at Kyushu University. These results confirm the fact that the simplified method could accurately and reliably predict the strength of CFT columns under combined axial compression and flexure.

Distortional buckling of cold-formed lipped channel columns subjected to axial compression

  • Zhou, Wangbao;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.331-338
    • /
    • 2017
  • Cold-formed lipped channel columns (CFLCCs) have been widely used in light gauge steel constructions. The distortional buckling is one of the important buckling modes for CFLCCs and the distortional buckling critical load depends significantly on the rotational restrain stiffness generated by the web to the lipped flange. First, a simplified explicit expression for the rotational restraint stiffness of the lipped flange has been derived. Using the expression, the characteristics of the rotational restraint stiffness of the lipped flange have been investigated. The results show that there is a linear coupling relationship between the applied forces and the rotational restraint stiffness of the lipped flange. Based on the explicit expression of the rotational restraint stiffness of the lipped flange, a simplified analytical formula has been derived which can determine the elastic distortional buckling critical stress of the CFLCCs subjected to axial compression. The simplified analytical formula developed in this study has been shown to be accurate through the comparisons with results from the distortional buckling analyses using the ANSYS finite element software. The developed analytical formula is easy to apply, and can be used directly in practical design and incorporated into future design codes and guidelines.

Prediction of bridge flutter under a crosswind flow

  • Vu, Tan-Van;Lee, Ho-Yeop;Choi, Byung-Ho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.275-298
    • /
    • 2013
  • This paper presents a number of approximated analytical formulations for the flutter analysis of long-span bridges using the so-called uncoupled flutter derivatives. The formulae have been developed from the simplified framework of a bimodal coupled flutter problem. As a result, the proposed method represents an extension of Selberg's empirical formula to generic bridge sections, which may be prone to one of the aeroelastic instability such as coupled-mode or single-mode (either dominated by torsion or heaving mode) flutter. Two approximated expressions for the flutter derivatives are required so that only the experimental flutter derivatives of ($H_1^*$, $A_2^*$) are measured to calculate the onset flutter. Based on asymptotic expansions of the flutter derivatives, a further simplified formula was derived to predict the critical wind speed of the cross section, which is prone to the coupled-mode flutter at large reduced wind speeds. The numerical results produced by the proposed formulas have been compared with results obtained by complex eigenvalue analysis and available approximated methods show that they seem to give satisfactory results for a wide range of study cases. Thus, these formulas can be used in the assessment of bridge flutter performance at the preliminary design stage.

Simplified Analysis of Superstructure Section Considering Diaphragm and Optimum Design Conditions for ILM Bridge (다이아프램이 고려된 ILM 교량 상부단면의 단순해석 및 최적설계조건)

  • Lee, Hwan-Woo;Park, Yong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.459-467
    • /
    • 2014
  • ILM(Incremental Launching Method) bridges pass both the middle of spans and supports during launching. The launching noses are used to minimize the maximum positive moments and negative moments of the superstructure occurring during launching for ILM bridges. In this study, the simplified analysis formula considering diaphragm to calculate the bending moment that occurs during launching is induced and analyzes the optimum design conditions considering diaphragm. The accuracy of the proposed simplified analysis formular compared to the MIDAS Civil has an error of less than 5%. There is a difference up to 13% in the moment between the cases when the diaphragm is considered and is not. In addition, the criteria for deciding the unit weight of equivalent cross section and average stiffness value of equivalent cross section that can be applied to the simplified analysis formula is proposed. In this study, an effective way to optimize the launching nose is proposed that the optimum design is taken in the condition of minimizing the negative moment because of the mechanic characteristic of ILM bridges.

Comparison of standard's formula and simplified formula voltage drop on low voltage feeder design (저압간선의 전압강하 계산시 정식계산과 간이계산의 비교)

  • Choi, Hong-Kyoo;Cho, Kyeh-Soo;Seo, Beom-Gwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.207-209
    • /
    • 2004
  • 저압간선의 굵기산정시 일반적으로 간이 계산식이 사용되고 있으나 이는 교류 임피던스를 적용한 정식과는 허용 전압강하를 기준으로한 포설거리에서 차이가 있으므로 저압간선의 설계시 보다 정확한 계산을 위해 교류 임피던스를 기준으로한 정식을 사용하여 계산이 이루어져야 한다. 따라서, 본 논문에서는 정식과 간이식에 따른 계산결과와 실측을 통한 전압강하를 비교하여 정확한 전압강하 계산법을 검토하여 보았다.

  • PDF

Simplification of the Flexural Capacity of SFR-UHPCC Rectangular Beam

  • Han, Sang-Mook;Wu, Xiang-Guo;Kim, Sung-Wook;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.526-529
    • /
    • 2006
  • In this paper, flexure behavior of steel fiber reinforcement ultra high performance cementations composites (SFR-UHPCC) has been analyzed by equivalent stress block. Pulling-out tensile force of steel fiber with concrete matrix was induced. An appropriate flexure evaluation formula, i.e. semi-analytical formula, was established based on rectangular cross section beam for comparing with shear capacity and ultimate load of SFR-UHPCC beam. Finally, the semi-analytical formula has been simplified for the convenience of design work. Experimental results and theoretical shear strength are shown to compare with the formula proposed by this paper. The theory formula has a good prediction of failure type of SFR-UHPCC.

  • PDF

Design Charts and Simplified Formulae for Anchored Sheet Pile Wall- Using Equivalent Beam Analysis for Fixed End Supported Wall - (앵커식 널말뚝벽의 설계용 도표와 간편식- 고정지지 널말뚝의 등가보 해석을 사용하여 -)

  • 김기웅;원진오;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The major design parameters of the anchored sheet-pile wall include the determination of required penetration depth, the force acting on the anchor, and the maximum bending moment in the piling. Blum solved the fixed earth supported wall using the equivalent beam method, assuming that the wall can be separated into upper and lower parts of the point of contraflexure. Design charts help designer by simplifying the design procedure. But they have some difficulties under some Geotechnical and geometrical conditions. For example, the conventional design charts can compute design parameters only when the ground water table exists above the dredge line. In this paper, the design charts which can be used for the ground water table existing under the dredge line are presented. And simplified formulae are developed by regression analysis. It is found that simplified formulae are not only very useful for the practice of design but also they can evaluate the result of numerical methods or design charts.

  • PDF

Simplified Formula for Design of Fixed Earth Supported Sheet-Pile Wall in Sand (사질토 지반 앵커식 고정지지 널말뚝 설계용 간편식)

  • Yang, Woo-Shik;Kim, Khi-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.89-94
    • /
    • 1998
  • Stock(1992) had developed the graph for solving the penetration depth, tieforce of anchor and maximum bending moment of sheet-pile wall for cantilever and free earth supported anchored wall. Kim(1995) had developed graph for design of fixed earth supported anchored wall. In this paper, the simplified formulas for calculating the penetration depth, tieforce of anchor and maximum bending moment of sheet-pile wall was developed for fixed earth supported anchored wall in sand. The developed formulas may be helpful for design or sheet pile wall.

  • PDF

Design of Detention Pond and Critical Duration of Design Rainfall in Seoul

  • Lee, Jong-Tae;Yoon, Sei-Eui;Lee, Jae-Joon
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.33-43
    • /
    • 1994
  • This study is to determine the critical duration of design rainfall and to utilize it for the design of detention pond with pump station. To examine the effect of the duration and temporal distribytion of the design rainfall, Huff's quartile method is used for the 9 cases of durations (ranges from 20 to 240 minutes) with ten years return period, and the ILLUDAS model is used for runoff analysis. The storage ratio, which is the ratio of maximum storage amounts to total runoff volume, is introduced to determine the criticalduration of design rainfall. The duration which maximizes the storage ratio is adopted as the critical duration. This study is applied to 18 urban drainage watercheds with pump station in Seoul, of which the range of watershed area is 0.24~12.70$km^2$. The result of simulation shows that the duration which maximizes storage ratio is 30 and 60 minutes on the whole. It is also shown that the storage ratios of 2nd - and 3rd-quartile pattern are larger than those of 1st- and 4th-quartile pattern of temporal distribution. A simplified empirical formula for Seoul area is suggested by the regression analysis between the maximum storage ratio and the peak ratio. This formula can be utilized for the preliminary design and planning of detention pond with pump station.

  • PDF