• Title/Summary/Keyword: simplex polynomials

Search Result 3, Processing Time 0.018 seconds

GENERATION OF SIMPLEX POLYNOMIALS

  • LEE JEONG KEUN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.797-802
    • /
    • 2005
  • We generate simplex polynomials by using a method, which produces an OPS in (d + 1) variables from an OPS in d variables and the Jacobi polynomials. Also we obtain a partial differential equation of the form $${\Sigma}_{i,j=1}^{d+1}\;A_ij{\frac{{\partial}^2u}{{\partial}x_i{\partial}x_j}}+{\Sigma}_{i=1}^{d+1}\;B_iu\;=\;{\lambda}u$$, which has simplex polynomials as solutions, where ${\lambda}$ is the eigenvalue parameter.

A NOTE ON THE GENERALIZED BERNSTEIN POLYNOMIALS

  • Bayad, A.;Kim, T.;Lee, S.H.;Dolgy, D.V.
    • Honam Mathematical Journal
    • /
    • v.33 no.3
    • /
    • pp.431-439
    • /
    • 2011
  • We prove two identities for multivariate Bernstein polynomials on simplex, which are considered on a pointwise. In this paper, we study good approximations of Bernstein polynomials for every continuous functions on simplex and the higher dimensional q-analogues of Bernstein polynomials on simplex.

Vignetting Dimensional Geometric Models and a Downhill Simplex Search

  • Kim, Hyung Tae;Lee, Duk Yeon;Choi, Dongwoon;Kang, Jaehyeon;Lee, Dong-Wook
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.161-170
    • /
    • 2022
  • Three-dimensional (3D) geometric models are introduced to correct vignetting, and a downhill simplex search is applied to determine the coefficients of a 3D model used in digital microscopy. Vignetting is nonuniform illuminance with a geometric regularity on a two-dimensional (2D) image plane, which allows the illuminance distribution to be estimated using 3D models. The 3D models are defined using generalized polynomials and arbitrary coefficients. Because the 3D models are nonlinear, their coefficients are determined using a simplex search. The cost function of the simplex search is defined to minimize the error between the 3D model and the reference image of a standard white board. The conventional and proposed methods for correcting the vignetting are used in experiments on four inspection systems based on machine vision and microscopy. The methods are investigated using various performance indices, including the coefficient of determination, the mean absolute error, and the uniformity after correction. The proposed method is intuitive and shows performance similar to the conventional approach, using a smaller number of coefficients.