DOI QR코드

DOI QR Code

A NOTE ON THE GENERALIZED BERNSTEIN POLYNOMIALS

  • Bayad, A. (Department de Mathematiques, Universite d'Evry Val d'Essonne) ;
  • Kim, T. (Division of General Education, Kwangwoon University) ;
  • Lee, S.H. (Division of General Education, Kwangwoon University) ;
  • Dolgy, D.V. (Institute of Mathematics and Computer Sciences, Far Eastern National University)
  • Received : 2011.08.11
  • Accepted : 2011.08.25
  • Published : 2011.09.25

Abstract

We prove two identities for multivariate Bernstein polynomials on simplex, which are considered on a pointwise. In this paper, we study good approximations of Bernstein polynomials for every continuous functions on simplex and the higher dimensional q-analogues of Bernstein polynomials on simplex.

Keywords

References

  1. U. Abel, Z. Li, A new proof of an identity of Jetter and Stockler for multivariate Bernstein polynomials, Computer Aided Geometric Design 23 (2006), pp. 297-301. https://doi.org/10.1016/j.cagd.2005.11.001
  2. A. Bayad, T. Kim, Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math.Phys. 18 (2011), pp.133-143. https://doi.org/10.1134/S1061920811020014
  3. C. Ding, F. Cao, K-functionals and multivariate Bernstein polynomials, Journal of Approximation Theory 155 (2008), pp.125-135. https://doi.org/10.1016/j.jat.2008.03.011
  4. Y. Y. Feng , J. Kozak , Asymptotic expansion formula for Bernstein polynomials defined on a simplex, Constructive Approximation, Volume 8, Number 1 ,(1992), pp. 49-58. https://doi.org/10.1007/BF01208905
  5. S. N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur la calcul des probabilites. Comm. Soc. Math. Charkow Ser. 2 t. 13, 1-2 (1912-1913).
  6. L. Buse and R. Goldman, Division algorithms for Bernstein polynomials, Computer Aided Geometric Design, 25(9) (2008), 850-865. https://doi.org/10.1016/j.cagd.2007.10.003
  7. R. Goldman, An Integrated Introduction to Computer Graphics and Geometric Modeling, CRC Press, Taylor and Francis, New York, 2009.
  8. R. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, Morgan Kaufmann Publishers, Academic Press, San Diego, 2002.
  9. R. Goldman, Identities for the Univariate and Bivariate Bernstein Basis Functions, Graphics Gems V, edited by Alan Paeth, Academic Press, (1995), 149-162.
  10. K. Jetter, J. Stockler, An Identity for Multivariate Bernstein Polynomial, Computer Aided Geometric Design 20 (2003), pp.563-577. https://doi.org/10.1016/j.cagd.2003.06.005
  11. T. Kim, A note on q-Bernstein polynomials, Russ. J. Math. Phys. 18 (2011), pp. 73-82. https://doi.org/10.1134/S1061920811010080
  12. T. Kim, J. Choi, Y. H. Kim, C. S. Ryoo, On the fermionic p-adic integral representation of Bernstein polynomials associated with Euler numbers and polynomials, J. Inequal. Appl., Art. ID 864247, 12 pages, 2010.
  13. T. Kim, J. Choi, Y. H. Kim, q-Bernstein polynomials associated with q-Stirling numbers and Carlitz's q-Bernoulli numbers, Abstr. Appl. Anal., Art. ID 150975, 11 pages, 2010.
  14. T. Kim, J. Choi, Y. H.Kim, A note on p-adic integrals associated with Bernstein and q-Bernstein polynomials , Advanced Studies in Contemporary Mathematics 21 (2011), 131-138.
  15. G. G. Lorentz, Bernstein Polynomials, Second Ed., Chelsea, New York, N. Y., 1986.
  16. G. M. Phillips, Interpolation and approximation by polynomials, CMS Books in Mathematics/ Ouvrages de Mathematiques de la SMC, 14. Springer-Verlag, New York, (2003).
  17. Y. Simsek and M. Acikgoz, A new generating function of (q-) Bernstein-type polynomials and their interpolation function, Abstract and Applied Analysis, Article ID 769095, 12 pages, 2010. doi:10.1155/2010/769095.