• Title/Summary/Keyword: simple-beam

Search Result 1,068, Processing Time 0.028 seconds

The study of improving the performance of lower direction finding ability due to the interfered phase difference of circular array Antennas (원형배열안테나의 위상간섭에 의한 방향탐지 성능저하 개선연구)

  • Chung, Jae-Woo;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.535-539
    • /
    • 2010
  • This paper include to study DoA(Direction of Arrival) for radio collection and monitoring system. The direction finding calculated by applying the CVDF (Correlation Vector Direction Finding) algorithm for the five circular dipole antenna over V / UHF band. To improve the accuracy of direction finding by applying CVDF algorithm needs to obtain ideal phase difference each antennas. However, a circular array antenna phase difference pattern may be distorted on a specific frequency band or to particular direction. The effect of installing each array antennas circularly and the effect of the interference of center pole (located in the center of a circular array antenna mount) may make the distortion of phase pattern. If you use an active antenna instead of passive antenna to obtain good sensitivity, you would measure the more distortion. This paper propose how to change combination of antennas to measure the phase in real-time and how to use antenna beam patterns for minimizing the degradation phenomena at applying simple CVDF algorithm and increasing the direction finding capability.

  • PDF

Design Methods for Eccentrically Loaded Bolt Groups for the Single Plate Connections Considering Sloped Edge Distance (편심전단을 받는 단일판접합부의 경사연단거리를 고려한 볼트군의 설계법)

  • Choi, Sun Kyu;Yoo, Jung Han;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 2014
  • A single plate connection(SPC) consists of a plate welded to the columns and bolts connected to the beam web. The SPC is widely used for a simple shear connection of steel structure because it is easy-to-fabricated, easy-to-installed and economical. The conventional SPC is used for 2 to 12 bolts in a single vertical row. It is designed to limit the plate thickness by bolt diameter to obtain flexible and ductile connections. The design strength for eccentric shear shall be the lesser of the shear strength of bolts or bearing strength of plate and when the design strength is decided by edge distance failure, the results can be very conservative. Although the research on special solution for 'weak-plate/strong-bolt' model with 2 to 4 bolts has been conducted by L. S. Muir, and W. A. Thonton, 2004, study on generalized design procedures did not conduct. This study proposed design procedure for evaluation of the design strength of eccentric shear bolt groups on a single plate connection based on the actual edge distance and the direction of bolt reaction forces by using elastic vector method(EVM) and instantaneous center of rotation method(ICM).

Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning (딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측)

  • Minsu, Kim;Sanghyun, Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.375-380
    • /
    • 2022
  • High-speed railway bridges carry a risk of dynamic response amplification due to resonance caused by train loads, and running safety and riding comfort must therefore be reviewed through dynamic analysis in accordance with design codes. The running safety and ride comfort calculation procedure, however, is time consuming and expensive because dynamic analyses must be performed for every 10 km/h interval up to 110% of the design speed, including the critical speed for each train type. In this paper, a deep-learning-based prediction system that can predict the running safety and ride comfort in advance is proposed. The system does not use dynamic analysis but employs a deep learning algorithm. The proposed system is based on a neural network trained on the dynamic analysis results of each train and speed of the railway bridge and can predict the running safety and ride comfort according to input parameters such as train speed and bridge characteristics. To confirm the performance of the proposed system, running safety and riding comfort are predicted for a single span, straight simple beam bridge. Our results confirm that the deck vertical displacement and deck vertical acceleration for calculating running safety and riding comfort can be predicted with high accuracy.

Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (I) Proposal of Load Distribution Ratios (단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율- (I) 하중분배율의 제안)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.259-267
    • /
    • 2008
  • The ultimate strengths of reinforced concrete deep beams are governed by the capacity of the shear resistance mechanism composed of concrete and shear reinforcing bars, and the structural behaviors of the beams are mainly controlled by the mechanical relationships according to the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of simply supported reinforced concrete deep beams. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the design of simply supported reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of a load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the prime design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete influencing the ultimate strength and behavior are reflected upon based on various and numerous numerical analysis results. In the companion paper, the validity of presented model and load distribution ratio was examined by employing them to the evaluation of the ultimate strengths of various simply supported reinforced concrete deep beams tested to failure.

Decrease of the Activation and Carbamylation of Rubisco by High CO2 in Kidney Bean (KidneyBean에서의 고 CO2 농도에 의한 Rubisco의 Activation과 Carbamylation의 감소)

  • 노광수;김재기
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.295-302
    • /
    • 1996
  • The measurements of rubisco parameters are important in photosynthetic studies. In this experiment, we used photometric assay method to detect these major parameters, such as activity, carbamylation and amount of rubisco. The main advantages of this method are very simple and as sensitive as conventional methods which usually produce radioactive waste. In this study, with kidney bean (Phaseolus vulgatis L.) leaves grown at normal $CO_2$ (350ppm) and high $CO_2$ (650 ppm), we investigated the effect of $CO_2$ concentration on activation and carbamylation of rubisco by measuring the rubisco activity, carbamylation rate and amount of rubisco using a dual beam (334nm and 405nm) spectrophotometer, and analyzed the polypeptide profiles of rubisco by SDS-PAGE. When $CO_2$ concentration was raised from 350ppm to 650ppm, all parameters of rubisco were decreased : $41.2{\mu}M/m^2/s and 52.2{\mu}M/m^2/s$ to $27.4{\mu}M/m^2/s and 46.1{\mu}M/m^2/s$ for initial and total rubisco activity, respectively ; from 79% to 58.9% for carbamylation rate ; from $1.94 {\mu}M/m^2$ to 1.58{\mu}M/m^2$ for amount of rubisco. These results suggests that the decrease in rubisco activity at high $CO_2$ was caused by carbamylation. The analysis of the preparation by SDS-PAGE showed two major polypeptides at 50 and 14.5 kD which were identified as the large and the small subunits of rubisco. There were no differences in the intensity compared high $CO_2$ to normal $CO_2$ in both 50 kD and 14.5 kD bands. We also found that these inhibitory effects of $CO_2$ were reversible. When high $CO_2$ was switched to normal $CO_2$, the parameters of rubisco changed were almost the same as normal rubisco parameters. These data provide an evidence that activity of rubisco was recovered by $CO_2$ concentration of 350 ppm.

  • PDF

Treatment of Carcinoma of the Uterine Cervix with High-Dose-Rate Intracavitary Irradiation using Ralstron (고선량률 강내조사를 사용한 자궁경부암의 치료)

  • Suh Chang Ok;Kim Gwi Eon;Loh John J.K.
    • Radiation Oncology Journal
    • /
    • v.8 no.2
    • /
    • pp.231-239
    • /
    • 1990
  • From May 1979 through December 1981 a total of 524 patients with carcinoma of the uterine cervix were treated by radiation therapy with curative intent. Among the 524 patients, 350 were treated with a high-dose-rate (HDR), remote-controlled, afterloading intracavitary irradiation (ICR) system using a cobalt source (Ralstron), and 168 patients received a low-dose-rate (LDR) ICR using a radium source. External beam irradiation with a total dose of 40-50 Gy to the whole pelvis followed by intracavitary irradiation with a total dose of 30-39 Gy in 10-13 fractions to point A was the treatment protocol. ICR was given three times a week with a dose of 3 Gy per fraction. Five-year actuarial survival rates in the HDR-ICR group were $77.6{\%}$ in stage IB (N=20), $68.2{\%}$ in stage II (N=182), and $50.9{\%}$ in stage III (N=148). In LDR-ICR group, 5-year survival rates were $87.5{\%}$ in stage IB (N=22), $66.3{\%}$ in stage II (N=91), and $55.4{\%}$ in stage III (N=52). Survival rates showed a statistically significant difference by stage, but there was no significant difference between the two ICR groups. Late bowel complications after radiotherapy were noted in $3.7{\%}$ of the HDR-ICR group and $8.4{\%}$ of the LDR-ICR group. There was no severe complication requiring surgical management. The incidence of bladder complications was $1.4{\%}$ in the HDR-ICR group and $2.4{\%}$ in the LDR-ICR group. The application of HDR-ICR was technically simple and easily performed on an outpatient basis without anesthesia, and the patients tolerated it very well. Radiation exposure to personnel was virtually nil in contrast to that of LDR-ICR. Within a given period of time, more patients can be treated with HDR-ICR because of the short treatment time. Therefore, the HDR-ICR system is highly recommended for a cancer center, particularly one with a large number of patients to be treated. In order to achieve an improved outcome, however, the optimum dose-fractionation schedule of HDR-ICR and optimum combination of intracavitary irradiation with external beam irradiation should be determined through an extensive protocol.

  • PDF

Examinations on Applications of Manual Calculation Programs on Lung Cancer Radiation Therapy Using Analytical Anisotropic Algorithm (Analytical Anisotropic Algorithm을 사용한 폐암 치료 시 MU 검증 프로그램 적용에 관한 고찰)

  • Kim, Jong-Min;Kim, Dae-Sup;Hong, Dong-Ki;Back, Geum-Mun;Kwak, Jung-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • Purpose: There was a problem with using MU verification programs for the reasons that there were errors of MU when using MU verification programs based on Pencil Beam Convolution (PBC) Algorithm with radiation treatment plans around lung using Analytical Anisotropic Algorithm (AAA). On this study, we studied the methods that can verify the calculated treatment plans using AAA. Materials and Methods: Using Eclipse treatment planning system (Version 8.9, Varian, USA), for each 57 fields of 7 cases of Lung Stereotactic Body Radiation Therapy (SBRT), we have calculated using PBC and AAA with dose calculation algorithm. By developing MU of established plans, we compared and analyzed with MU of manual calculation programs. We have analyzed relationship between errors and 4 variables such as field size, lung path distance of radiation, Tumor path distance of radiation, effective depth that can affect on errors created from PBC algorithm and AAA using commonly used programs. Results: Errors of PBC algorithm have showned $0.2{\pm}1.0%$ and errors of AAA have showned $3.5{\pm}2.8%$. Moreover, as a result of analyzing 4 variables that can affect on errors, relationship in errors between lung path distance and MU, connection coefficient 0.648 (P=0.000) has been increased and we could calculate MU correction factor that is A.E=L.P 0.00903+0.02048 and as a result of replying for manual calculation program, errors of $3.5{\pm}2.8%$ before the application has been decreased within $0.4{\pm}2.0%$. Conclusion: On this study, we have learned that errors from manual calculation program have been increased as lung path distance of radiation increases and we could verified MU of AAA with a simple method that is called MU correction factor.

  • PDF

The characteristics on dose distribution of a large field (넓은 광자선 조사면($40{\times}40cm^2$ 이상)의 선량분포 특성)

  • Lee Sang Rok;Jeong Deok Yang;Lee Byoung Koo;Kwon Young Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • I. Purpose In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100cm, size of field under $40{\times}40cm2$) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. II. Method & Materials In this study, using Multidata Water Phantom from standard SSD 100cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. III. Results & Conclusion In comparison with the standard dose data, parameter which measures between SSD 180cm and 350cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  • PDF

Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs (블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법)

  • O-Hyun Kwon;Joo-Shin Park;Jung-Kwan Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.363-371
    • /
    • 2023
  • To construct a ship, blocks of various sizes must be moved and erected . In this process, lugs are used such that they match the block fastening method and various functions suitable for the characteristics of each shipyard facility. The sizes and shapes of the lugs vary depending on the weight and shape of the block structures. The structure is reinforced by welding the doubling pads to compensate for insufficient rigidity around the holes where the shackle is fastened. As for the method of designing lugs according to lifting loading conditions, a simple calculation based on the beam theory and structural analysis using numerical modeling are performed. In the case of the analytical method, a standardized evaluation method must be established because results may differ depending on the type of element and modeling method. The application of this ambiguous methodology may cause serious safety problems during the process of moving and turning-over blocks. In this study , the effects of various parameters are compared and analyzed through numerical structural analysis to determine the modeling conditions and evaluation method that can evaluate the actual structural response of the lug. The modeling technique that represents the plate part and weld bead around the lug hole provides the most realistic behavior results. The modeling results with the same conditions as those of the actual lug where only the weld bead is connected to the main body of the lug, showed a lower ulimated strength compared with the results obtained by applying the MPC load. The two-dimensional shell element is applied to reduce the modeling and analysis time, and a safety working load was verified to be predicted by reducing the thickness of the doubling pad by 85%. The results of the effects of various parameters reviewed in the study are expected to be used as good reference data for the lug design and safe working load prediction.

The study of MDCT of Radiation dose in the department of Radiology of general hospitals in the local area (일 지역 종합병원 영상의학과 MDCT선량에 대한 연구)

  • Shin, Jung-Sub
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.4
    • /
    • pp.281-290
    • /
    • 2012
  • The difference of radiation dose of MDCT due to different protocols between hospitals was analyzed by CTDI, DLP, the number of Slice and the number of DLP/Slice in 30 cases of the head, the abdomen and the chest that have 10 cases each from MDCT examination of the department of diagnostic imaging of three general hospitals in Gyeongsangbuk-do. The difference of image quality, CTDI, DLP, radiation dose in the eye and radiation dose in thyroid was analyzed after both helical scan and normal scan for head CT were performed because a protocol of head CT is relatively simple and head CT is the most frequent case. Head CT was significantly higher in two-thirds of hospitals compared to A hospital that does not exceed a CTDI diagnostic reference level (IAEA 50mGy, Korea 60mGy) (p<0.001). DLP was higher in one-third of hospitals than a diagnostic reference level of IAEA 1,050mGy.cm and Korea 1,000mGy.cm and two-thirds exceeded the recommendation of Korea and those were significantly higher than A hospital that does not exceed a diagnostic reference level (p<0.001). Abdomen CT showed 119mGy that was higher than a diagnostic reference level of IAEA 25mGy and Korea 20mGy in one-third. DLP in all hospitals was higher that Korea recommendation of 700mGy.cm. Among target hospitals, C hospital showed high radiation dose in all tests because MPR and 3D were of great importance due to low pitch and high Tube Curren. To analyze the difference of radiation dose by scan methods, normal scan and helical scan for head CT of the same patient were performed. In the result, CTDI and DLP of helical CT were higher 63.4% and 93.7% than normal scan (p<0.05, p<0.01). However, normal scan of radiation dose in thyroid was higher 87.26% (p<0.01). Beam of helical CT looked like a bell in the deep part and the marginal part so thyroid was exposed with low radiation dose deviated from central beam. In addition, helical scan used Gantry angle perpendicularly and normal scan used it parallel to the orbitomeatal line. Therefore, radiation dose in thyroid decreased in helical scan. However, a protocol in this study showed higher radiation dose than diagnostic reference level of KFDA. To obey the recommendation of KFDA, low Tube Curren and high pitch were demanded. In this study, the difference of image quality between normal scan and helical scan was not significant. Therefore, a standardized protocol of normal scan was generally used and protective gear for thyroid was needed except a special case. We studied a part of CT cases in the local area. Therefore, the result could not represent the entire cases. However, we confirmed that patient's radiation dose in some cases exceeded the recommendation and the deviation between hospitals was observed. To improve this issue, doctors of diagnostic imaging or technologists of radiology should perform CT by the optimized protocol to decrease a level of CT radiation and also reveal radiation dose for the right to know of patients. However, they had little understanding of the situation. Therefore, the effort of relevant agencies with education program for CT radiation dose, release of radiation dose from CT examination and addition of radiation dose control and open CT contents into evaluation for hospital services and certification, and also the effort of health professionals with the best protocol to realize optimized CT examination.