• Title/Summary/Keyword: simple waves

Search Result 278, Processing Time 0.024 seconds

The study on piezoelectric transducers: theoretical analysis and experimental verification

  • Sung, Chia-Chung;Tien, Szu-Chi
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1063-1083
    • /
    • 2015
  • The main purpose of this research is to utilize simple mathematical models to depict the vibration behavior and the resulted sound field of a piezoelectric disk for ultrasonic transducers. Instead of using 1-D vibration model, coupled effect between the thickness and the radial motions was considered to be close to the real vibration behavior. Moreover, Huygens-Fresnel principle was used in both incident and reflected waves to analyze the sound field under obstacles in finite distance. Results of the tested piezoelectric disk show that, discrepancies between the simulation and experiment are 2.5% for resonant frequency and 12% for resulted sound field. Therefore, the proposed method can be used to reduce the complexity in modeling vibration problems, and increase the reliability on analyzing piezoeletric transducers in the design stage.

What is the Intelligent Tissue Theory and How Does it Relate to Acupuncture?

  • Kovich, Fletcher
    • Journal of Acupuncture Research
    • /
    • v.37 no.4
    • /
    • pp.241-246
    • /
    • 2020
  • The intelligent tissue theory states that organ information is conveyed on electromagnetic waves and these are interpreted by bodily tissue, so that real-time organ states are reflected in the tissue at each organ's related meridian. This article describes the practical implications of this, how this relates to acupuncture, and how it accounts for the common acupuncture-related phenomena. The Chinese medicine notion of "chi" is also explored. Its history is described, including the 1970's reinterpretation. This article suggests that both the Nei Jing and also the 1970's model of how acupuncture works are merely metaphorical; do not describe reality; and that "chi" (which is central to these models) does not really exist. Alternative explanations are provided for all the common phenomena that are usually attributed to "chi", and a simple account of how acupuncture works is given.

A De-Embedding Technique of a Three-Port Network with Two Ports Coupled

  • Pu, Bo;Kim, Jonghyeon;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.258-265
    • /
    • 2015
  • A de-embedding method for multiport networks, especially for coupled odd interconnection lines, is presented in this paper. This method does not require a conversion from S-parameters to T-parameters, which is widely used in the de-embedding technique of multiport networks based on cascaded simple two-port relations, whereas here, we apply an operation to the S-matrix to generate all the uncoupled and coupled coefficients. The derivation of the method is based on the relations of incident and reflected waves between the input of the entire network and the input of the intrinsic device under test (DUT). The characteristics of the intrinsic DUT are eventually achieved and expressed as a function of the S-parameters of the whole network, which are easily obtained. The derived coefficients constitute ABCD-parameters for a convenient implementation of the method into cascaded multiport networks. A validation was performed based on a spice-like circuit simulator, and this verified the proposed method for both uncoupled and coupled cases.

NONTHERMAL RADIATION FROM RELATIVISTIC ELECTRONS ACCELERATED AT SPHERICALLY EXPANDING SHOCKS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.9-20
    • /
    • 2015
  • We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks based on simple DSA models in the test-particle regime.

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF

MULTIDIMENSIONAL INTERPOLATIONS FOR THE HIGH ORDER SCHEMES IN ADAPTIVE GRIDS (적응 격자 고차 해상도 해법을 위한 다차원 내삽법)

  • Chang, S.M.;Morris, P.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.39-47
    • /
    • 2006
  • In this paper, the authors developed a multidimensional interpolation method inside a finite volume cell in the computation of high-order accurate numerical flux such as the fifth order WEND (weighted essentially non-oscillatory) scheme. This numerical method starts from a simple Taylor series expansion in a proper spatial order of accuracy, and the WEND filter is used for the reconstruction of sharp nonlinear waves like shocks in the compressible flow. Two kinds of interpolations are developed: one is for the cell-averaged values of conservative variables divided in one mother cell (Type 1), and the other is for the vertex values in the individual cells (Type 2). The result of the present study can be directly used to the cell refinement as well as the convective flux between finer and coarser cells in the Cartesian adaptive grid system (Type 1) and to the post-processing as well as the viscous flux in the Navier-Stokes equations on any types of structured and unstructured grids (Type 2).

The design technique of the underwater anechoic basin in KRISO and its acoustic characteristics in ultrasound region. (무향 수조의 설계 기법 및 초음파 영역에서의 음향학적 특성)

  • 김시문;임용곤;이종무;박종원;최영철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.350-355
    • /
    • 2001
  • In order to verify the performance of acoustic-based communication systems, a reliable check-up method is needed, which simulates similar oceanic conditions in low cost. One of the possible candidates would be the performance test in an underwater anechoic basin producing no reflecting waves. For this purpose KRISO (Korea Research Institute of Ships and Ocean Engineering) have constructed an underwater semi-anechoic basin from 1999 to 2001. This paper describes its design procedure, especially, how the material and size of the absorbing walls were chosen. Experiments were also performed to check its anechoic quality, Comparing the results with simple analytical results we concluded that the anechoic basin is working well for some selected frequency ranges.

  • PDF

A Study on the Generation of Circularly Polarized Waves with a Slot Antenna by Coupling of a Strip Scatterer (스트립형 산란도체의 결합에 의한 슬롯안테나의 원편파 형성에 관한 연구)

  • Hur, Jung;Lee, Choong-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.829-835
    • /
    • 1990
  • We proposed a new radiating structure generating a circularly polarized wave. Futhermore, we show that it is possible to generate all kind of polarizations by simple variations of some schematic factors. Basically, the structure composed of a slot and a strip. The length of slot and strip, the slot-strip distance and the strip inclination are the crucial factors to determine the polarization form. In this paper, we investigated the effects on polarization and other radiation characteristics by varying the factors.

  • PDF

A Disturbance Observer-Based Robust Controller Against Load Variations in a Single Phase DC/AC Inverter System (단상 DC/AC 인버터 시스템의 부하변동을 고려한 외란 관측기 기반 제어기)

  • Kim, Sung-Jong;Son, Young-Ik;Jeong, Yu-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.110-112
    • /
    • 2007
  • Output voltage waves of a DC/AC inverter system are likely to be distorted if variable loads e.g. motors or rectifiers exist in the output terminal. This paper designs a disturbance observer-based PI controller for a single-phase inverter system that is robust against load changes. In this paper, we regard the output voltage changes due to various loads as disturbances of the control system, Then we design a disturbance observer for estimation of the disturbances caused by the load current and any other error sources (such as parameter uncertainties and model mismatches etc.). In order to test the performance of the proposed control law, simulation studies are carried out for a single-phase inverter system using SimPowerSystems of Matlab Simulink. Compared to a simple PI control, the disturbance observer-based controller shows enhanced performance in transient responses for step load changes.

  • PDF

Heat jet approach for finite temperature atomic simulations of two-dimensional square lattice

  • Liu, Baiyili;Tang, Shaoqiang
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.371-393
    • /
    • 2016
  • We propose a heat jet approach for a two-dimensional square lattice with nearest neighbouring harmonic interaction. First, we design a two-way matching boundary condition that linearly relates the displacement and velocity at atoms near the boundary, and a suitable input in terms of given incoming wave modes. Then a phonon representation for finite temperature lattice motion is adopted. The proposed approach is simple and compact. Numerical tests validate the effectiveness of the boundary condition in reflection suppression for outgoing waves. It maintains target temperature for the lattice, with expected kinetic energy distribution and heat flux. Moreover, its linear nature facilitates reliable finite temperature atomic simulations with a correct description for non-thermal motions.