• Title/Summary/Keyword: simple sequence repeat marker

Search Result 90, Processing Time 0.024 seconds

ISSR marker-assisted selection of male and female plants in a promising dioecious crop: jojoba (Simmondsia chinensis)

  • Sharma, Kuldeep;Agrawal, Veena;Gupta, Sarika;Kumar, Ravindra;Prasad, Manoj
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.239-243
    • /
    • 2008
  • Simmondsia chinensis (Link) Schneider, a multipurpose and monogeneric dioecious shrub from arid zones, has emerged as a cash crop all over the globe. Its seed propagation poses severe problems due to its male-biased population: the male:female ratio is 5:1. Investigations have been carried out to generate a sex-specific Inter-simple sequence repeat (ISSR) marker for the early detection of male and female plants. Of the 42 primers analysed with a bulk sample of pooled male DNA and a bulk sample of pooled female DNA, only one primer, UBC-807, produced a unique ~1,200 base-pair fragment in the male DNA. To validate this observation, this primer was re-tested with individual male and female samples from eight cultivars. A similar unique ~1,200 bp fragment was present in the male individuals of all eight cultivars and completely absent in the female individuals tested. This is the first report of the use of ISSR markers to ascertain sex in physiologically mature S. chinensis plants.

The complete chloroplast genome of Diarthron linifolium (Thymelaeaceae), a species found on a limestone outcrop in eastern Asia

  • KIM, Sang-Tae;OH, Sang-Hun;PARK, Jongsun
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.4
    • /
    • pp.345-352
    • /
    • 2021
  • Diarthron linifolium Turcz. is an annual herb usually found in sandy soil or limestone areas. Plants in the genus Diarthron are known to have toxic chemicals that may, however, be potentially useful as an anticancer treatment. Diarthron linifolium is a unique species among the species of the genus distributed in Korea. Here, we determine the genetic variation of D. linifolium collected in Korea with a full chloroplast genome and investigate its evolutionary status by means of a phylogenetic analysis. The chloroplast genome of Korean D. linifolium has a total length of 172,644 bp with four subregions; 86,158 bp of large single copy and 2,858 bp of small single copy (SSC) regions are separated by 41,814 bp of inverted repeat (IR) regions. We found that the SSC region of D. linifolium is considerably short but that IRs are relatively long in comparison with other chloroplast genomes. Various simple sequence repeats were identified, and our nucleotide diversity analysis suggested potential marker regions near ndhF. The phylogenetic analysis indicated that D. linifolium from Korea is a sister to the group of Daphne species.

Development of Simple Sequence Repeat Markers from Adenophora triphylla var. japonica (Regel) H. Hara using Next Generation Sequencing (차세대염기서열분석법을 이용한 잔대의 SSR 마커 개발)

  • Park, Ki Chan;Kim, Young Guk;Hwangbo, Kyeong;Gil, Jinsu;Chung, Hee;Park, Sin Gi;Hong, Chang Pyo;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.411-417
    • /
    • 2017
  • Background: Adenophora triphylla var. japonica (Regel) H. Hara shows vegetative growth with radical leaves during the first year and shows reproductive growth with cauline leaves and bolting during the second year. In addition, the shape of the plant varies within the same species. For this reason, there are limitations to classifying the species by visual examination. However, there is not sufficient genetic information or molecular tools to analyze the genetic diversity of the plant. Methods and Results: Approximately 34.59 Gbp of raw data containing 342,487,502 reads was obtained from next generation sequencing (NGS) and these reads were assembled into 357,211 scaffolds. A total of 84,106 simple sequence repeat (SSR) regions were identified and 14,133 primer sets were designed. From the designed primer sets, 95 were randomly selected and were applied to the genomic DNA which was extracted from five plants and pooled. Thirty-nine primer sets showing more than two bands were finally selected as SSR markers, and were used for the genetic relationship analysis. Conclusions: The 39 novel SSR markers developed in this study could be used for the genetic diversity analysis, variety identification, new variety development and molecular breeding of A. triphylla.

Analysis of Molecular Variance and Population Structure of Sesame (Sesamum indicum L.) Genotypes Using Simple Sequence Repeat Markers

  • Asekova, Sovetgul;Kulkarni, Krishnanand P.;Oh, Ki Won;Lee, Myung-Hee;Oh, Eunyoung;Kim, Jung-In;Yeo, Un-Sang;Pae, Suk-Bok;Ha, Tae Joung;Kim, Sung Up
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.321-336
    • /
    • 2018
  • Sesame (Sesamum indicum L.) is an important oilseed crop grown in tropical and subtropical areas. The objective of this study was to investigate the genetic relationships among 129 sesame landraces and cultivars using simple sequence repeat (SSR) markers. Out of 70 SSRs, 23 were found to be informative and produced 157 alleles. The number of alleles per locus ranged from 3 - 14, whereas polymorphic information content ranged from 0.33 - 0.86. A distance-based phylogenetic analysis revealed two major and six minor clusters. The population structure analysis using a Bayesian model-based program in STRUCTURE 2.3.4 divided 129 sesame accessions into three major populations (K = 3). Based on pairwise comparison estimates, Pop1 was observed to be genetically close to Pop2 with $F_{ST}$ value of 0.15, while Pop2 and Pop3 were genetically closest with $F_{ST}$ value of 0.08. Analysis of molecular variance revealed a high percentage of variability among individuals within populations (85.84%) than among the populations (14.16%). Similarly, a high variance was observed among the individuals within the country of origins (90.45%) than between the countries of origins. The grouping of genotypes in clusters was not related to their geographic origin indicating considerable gene flow among sesame genotypes across the selected geographic regions. The SSR markers used in the present study were able to distinguish closely linked sesame genotypes, thereby showing their usefulness in assessing the potentially important source of genetic variation. These markers can be used for future sesame varietal classification, conservation, and other breeding purposes.

Analysis of Inter-simple sequence repeat (ISSR) markers in cultivars and collected strains of button mushroom (Agaricus bisporus) (양송이 품종과 수집 균주간의 Inter-simple sequence repeat (ISSR) 마커 분석)

  • Nam, Youn-keol;Kong, Won-Sik;Jang, Kab-Yeul;Shin, Pyung-Gyun;Oh, MinJi;Im, Ji-Hoon;Koo, Chang-Duck;Oh, Youn-Lee
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.139-144
    • /
    • 2017
  • A. bisporus is the fifth most cultivated mushroom in Korea, and approximately 10,757 tons were cultivated in 2015. The genetic diversity of collected strains in Korea and commercial cultivars was analyzed using inter-simple sequence repeat (ISSR) markers. ISSR markers known to be comparable among A. bisporus spp. were selected from various markers. Totally, 16 markers, namely the ISSR markers 807, 808, 810, 811, 834, 835, 836, 841, 842, P3, P8, P17, P22, P30, P38, and P39, were evaluated to discriminate between ASI 1110, 1114, 1115, 1238, 1246, 1365, 1366, and 1369 for selecting suitable markers in 16 markers. The ISSR markers P31, P38 and P39 exhibited various fingerprints that could help classify the strains in species. Using the three markers, genetic relationships among 39 strains, including commercial cultivars, such as SaeA and SaeYeon, were analyzed using the UPGMA method. The results of the analysis of the genetic relationships between commercial cultivars and collected strains in Korea confirmed that the commercial cultivars were different from the collected strains in Korea. These results suggested that the ISSR markers P31, P38, and P30 could be used for selecting the commercial cultivars of A. bisporus.

De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa

  • Kim, Hyun A;Shin, Ah-Young;Lee, Min-Seon;Lee, Hee-Jeong;Lee, Heung-Ryul;Ahn, Jongmoon;Nahm, Seokhyeon;Jo, Sung-Hwan;Park, Jeong Mee;Kwon, Suk-Yoon
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.

Development of SCAR Markers for Korean Wheat Cultivars Identification

  • Son, Jae-Han;Kim, Kyeong-Hoon;Shin, Sanghyun;Choi, Induk;Kim, Hag-Sin;Cheong, Young-Keun;Lee, Choon-Ki;Lee, Sung-Il;Choi, Ji-Yeong;Park, Kwang-Geun;Kang, Chon-Sik
    • Plant Breeding and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.224-230
    • /
    • 2014
  • Amplified fragment length polymorphism (AFLP) is a molecular marker technique based on DNA and is extremely useful in detection of high polymorphism between closely related genotypes like Korean wheat cultivars. Six sequence characterized amplified regions (SCARs) have been developed from inter simple sequence repeat (ISSR) analysis which enabled the identification and differentiation of 13 Korean wheat cultivars from the other cultivars. We used six combinations of primer sets in our AFLP analysis for developing additional cultivar-specific markers in Korean wheat. Fifty-eight of the AFLP bands were isolated from EA-ACG/MA-CAC, EA-AGC/MA-CTG and EA-AGG/MA-CTA primer combinations. Of which 40 bands were selected to design SCAR primer pairs for Korean wheat cultivar identification. Three of 58 amplified primer pairs, KWSM006, KWSM007 and JkSP, enabled wheat cultivar identification. Consequently, 23 of 32 Korean wheat cultivars were classified by eight SCAR marker sets.

Genetic Diversity among Indian Oak Tasar Silkworm, Antheraea proylei J. Revealed by ISSR Markers

  • Devi, Kanghujam Ibsorani;Ponnuvel, Kangayam M.;Singh, Laishram Somen;Singh, Kangjam Chaoba;Dutta, Karabi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.24 no.2
    • /
    • pp.57-61
    • /
    • 2012
  • The Indian Oak Tasar silkworm, Antheraea proylei J. is a beneficial insect with great economic importance in India for its silk production. In this study, six populations of Antheraea proylei and A. frithi Moore (as an out group) were subjected to inter simple sequence repeat (ISSR) marker analysis in order to assess its genetic diversity. Fifteen ISSR primers produced 91 markers among different breeds of A. proylei and A. frithi of which 89 are polymorphic, generating 97.8% polymorphism. The dendrogram constructed using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and cluster analysis made using Nei's genetic distance resulted in the formation of one major group containing four sub-groups separating the breeds. This result suggests that ISSR amplification is potentially useful for molecular characterization of oak tasar silkworm genotypes.

Genetic Stability Studies in Micropropagated Date Palm (Phoenix dactylifera L.) Plants using Microsatellite Marker

  • Kumar, Nitish;Singh, Amritpal S.;Modi, Arpan R.;Patel, Armi R.;Gajera, Bhavesh B.;Subhash, Narayanan
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Sixteen microsatellite markers (simple sequence repeat (SSR) markers) were employed to examine the genetic stability of 27 randomly chosen date palm (Phoenix dactylifera L.) plants produced through somatic embryogenesis with upto forty two in vitro subcultures. No microsatellite DNA variation was observed among all micropropagated plants. Our results indicate that the micropropagation protocol used for rapid in vitro multiplication is appropriate and suitable for clonal propagation of date palm and corroborated that somatic embryogenesis can also be used as one of the safe modes for production of true-to-type plants of date palm. This is the first report on the use of microsatellite DNA markers to establish the genetic stability in micropropagated date palm plants.

Genetics of Fusarium Wilt Resistance in Pigeonpea (Cajanus cajan) and Efficacy of Associated SSR Markers

  • Singh, Deepu;Sinha, B.;Rai, V.P.;Singh, M.N.;Singh, D.K.;Kumar, R.;Singh, A.K.
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Inheritance of resistance to Fusarium wilt (FW) disease caused by Fusarium udum was investigated in pigeonpea using four different long duration FW resistant genotypes viz., BDN-2004-1, BDN-2001-9, BWR-133 and IPA-234. Based on the $F_2$ segregation pattern, FW resistance has been reported to be governed by one dominant gene in BDN-2004-1 and BDN-2001-9, two duplicate dominant genes in BWR-133 and two dominant complimentary genes in resistance source IPA-234. Further, the efficacy of six simple sequence repeat (SSR) markers namely, ASSR-1, ASSR-23, ASSR-148, ASSR-229, ASSR-363 and ASSR-366 reported to be associated with FW resistance were also tested and concluded that markers ASSR-1, ASSR-23, ASSR-148 will be used for screening of parental genotypes in pigeonpea FW resistance breeding programs. The information on genetics of FW resistance generated from this study would be used, to introgress FW resistance into susceptible but highly adopted cultivars through marker-assisted backcross breeding and in conventional breeding programs.