• Title/Summary/Keyword: simple linear regression

Search Result 422, Processing Time 0.022 seconds

Normalization of Face Images Subject to Directional Illumination using Linear Model (선형모델을 이용한 방향성 조명하의 얼굴영상 정규화)

  • 고재필;김은주;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.

Censored varying coefficient regression model using Buckley-James method

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1167-1177
    • /
    • 2017
  • The censored regression using the pseudo-response variable proposed by Buckley and James has been one of the most well-known models. Recently, the varying coefficient regression model has received a great deal of attention as an important tool for modeling. In this paper we propose a censored varying coefficient regression model using Buckley-James method to consider situations where the regression coefficients of the model are not constant but change as the smoothing variables change. By using the formulation of least squares support vector machine (LS-SVM), the coefficient estimators of the proposed model can be easily obtained from simple linear equations. Furthermore, a generalized cross validation function can be easily derived. In this paper, we evaluated the proposed method and demonstrated the adequacy through simulate data sets and real data sets.

Estimation of error variance in nonparametric regression under a finite sample using ridge regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1223-1232
    • /
    • 2011
  • Tong and Wang's estimator (2005) is a new approach to estimate the error variance using least squares method such that a simple linear regression is asymptotically derived from Rice's lag- estimator (1984). Their estimator highly depends on the setting of a regressor and weights in small sample sizes. In this article, we propose a new approach via a local quadratic approximation to set regressors in a small sample case. We estimate the error variance as the intercept using a ridge regression because the regressors have the problem of multicollinearity. From the small simulation study, the performance of our approach with some existing methods is better in small sample cases and comparable in large cases. More research is required on unequally spaced points.

An estimator of the mean of the squared functions for a nonparametric regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.577-585
    • /
    • 2009
  • So far in a nonparametric regression model one of the interesting problems is estimating the error variance. In this paper we propose an estimator of the mean of the squared functions which is the numerator of SNR (Signal to Noise Ratio). To estimate SNR, the mean of the squared function should be firstly estimated. Our focus is on estimating the amplitude, that is the mean of the squared functions, in a nonparametric regression using a simple linear regression model with the quadratic form of observations as the dependent variable and the function of a lag as the regressor. Our method can be extended to nonparametric regression models with multivariate functions on unequally spaced design points or clustered designed points.

  • PDF

Development of Standarized Staffing Indices in School Foodservice System (학교급식시스템 유형별 표준 조리인력 산정모델 개발)

  • 이보숙
    • Journal of Nutrition and Health
    • /
    • v.31 no.3
    • /
    • pp.354-362
    • /
    • 1998
  • The purposes of this study were to develop standardized indices of staffing needs in each school, foodservice system through work sampling methodology . Conventional school foodservices were classified into 5 groups depending on size of meals served. Commissary school foodservices were also classified into 5 groups by cluster analysis using number of meals served, number of satellite schools, and time for transportation of food. Work measurement through work sampling methodology was conducted in 15 conventional and 21 commissary foodservices during 3 consecutive days from September to October in 1995. Statistical data analysis was completed using the SAS programs for descriptive analysis, cluster analysis, and simple linear regression. The results were as follows : Average points of leveling factors of conventional and commissary foodservices were 1.066 and 1.061 , respectively. Mean labor hours per work force was 328 minutes and 366 minutes in conventional and commissary foodservice , respectively. Standardized work time was calculated using leveling factor, ILO allowance rate (175) , and observational work time. The model for standardized indices of staffing needs was developed based on simple linear regression in each school foodservice system. In conventional school foodservice systems(for 100-1,900 meals per day) standardized staffing needs=3.2497 +0.005267$\times$number of meals served (F=273.1, R-square 0.9750, p<0.001). In commissary school foodservice systems (for 200-1,600 meals per day ) Standardized staffing needs=3.393384 +0.0063$\times$number of meals served (F=30.78, R-square 0.6580, p<0.001).

  • PDF

Statistical Inference for an Arithmetic Process

  • Francis, Leung Kit-Nam
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.87-92
    • /
    • 2002
  • A stochastic process {$A_n$, n = 1, 2, ...} is an arithmetic process (AP) if there exists some real number, d, so that {$A_n$ + (n-1)d, n =1, 2, ...} is a renewal process (RP). AP is a stochastically monotonic process and can be used for modeling a point process, i.e. point events occurring in a haphazard way in time (or space), especially with a trend. For example, the vents may be failures arising from a deteriorating machine; and such a series of failures id distributed haphazardly along a time continuum. In this paper, we discuss estimation procedures for an AP, similar to those for a geometric process (GP) proposed by Lam (1992). Two statistics are suggested for testing whether a given process is an AP. If this is so, we can estimate the parameters d, ${\mu}_{A1}$ and ${\sigma}^{2}_{A1}$ of the AP based on the techniques of simple linear regression, where ${\mu}_{A1}$ and ${\sigma}^2_{A1}$ are the mean and variance of the first random variable $A_1$ respectively. In this paper, the procedures are, for the most part, discussed in reliability terminology. Of course, the methods are valid in any area of application, in which case they should be interpreted accordingly.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

Study on Estimating the Optimal Number-right Score in Two Equivalent Mathematics-test by Linear Score Equating (수학교과의 동형고사 문항에서 양호도 향상에 유효한 최적정답율 산정에 관한 연구)

  • 홍석강
    • The Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 1998
  • In this paper, we have represented the efficient way how to enumerate the optimal number-right scores to adjust the item difficulty and to improve item discrimination. To estimate the optimal number-right scores in two equivalent math-tests by linear score equating a measurement error model was applied to the true scores observed from a pair of equivalent math-tests assumed to measure same trait. The model specification for true scores which is represented by the bivariate model is a simple regression model to inference the optimal number-right scores and we assume again that the two simple regression lines of raw scores and true scores are independent each other in their error models. We enumerated the difference between mean value of $\chi$* and ${\mu}$$\_$$\chi$/ and the difference between the mean value of y*and a+b${\mu}$$\_$$\chi$/ by making an inference the estimates from 2 error variable regression model. Furthermore, so as to distinguish from the original score points, the estimated number-right scores y’$\^$*/ as the estimated regression values of true scores with the same coordinate were moved to center points that were composed of such difference values with result of such parallel score moving procedure as above mentioned. We got the asymptotically normal distribution in Figure 5 that was represented as the optimal distribution of the optimal number-right scores so that we could decide the optimal proportion of number-right score in each item. Also by assumption that equivalence of two tests is closely connected to unidimensionality of a student’s ability. we introduce new definition of trait score to evaluate such ability in each item. In this study there are much limitations in getting the real true scores and in analyzing data of the bivariate error model. However, even with these limitations we believe that this study indicates that the estimation of optimal number right scores by using this enumeration procedure could be easily achieved.

  • PDF

Improvement of Suspended Solid Loads Estimation in Nakdong River Using Minimum Variance Unbiased Estimator (비편향 회귀분석모형을 이용한 낙동강 본류 부유사량 산정방법의 신뢰도 향상)

  • Han, Suhee;Kang, Du Kee;Shin, Hyun Suk;Yu, Jae-Jeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.251-259
    • /
    • 2007
  • In this study three log-transformed linear regression models are compared with the focus of bias correction problem. The models are the traditional simple linear regression estimator (SL), the quasi maximum likelihood estimator (QMLE) and the minimum variance unbiased estimator (MVUE). Using such models, suspended solid loads can be estimated using the discharge - suspended solid data set that has been measured by NIER Nakdong River Water Environment Laboratory. As a result, SL shows negative bias for most values of the measured discharge range. QMLE is nearly unbiased for moderate values of the measured discharge range, but shows increasingly positive bias for either large or small value of the measured discharge range. MVUE is unbiased. It is also analyzed how the estimated regression coefficient and exponent are distributed along Nakdong river main stream.

The Duration Feature of Acoustic Signals and Korean Speakers' Perception of English Stops (구간 신호 길이 자질과 한국인의 영어 파열음 지각)

  • Kim, Mun-Hyong;Jun, Jong-Sup
    • Phonetics and Speech Sciences
    • /
    • v.1 no.3
    • /
    • pp.19-28
    • /
    • 2009
  • This paper reports experimental findings about the duration feature of the acoustic components of English stops in Korean speakers' voicing perception. In our experiment, 35 participants discriminated between recorded stimuli and digitally transformed stimuli with different duration features from the original stimuli. 72 sets of paired stimuli are generated to test the effects of the duration feature in various phonetic contexts. The result of our experiment is a complicated cross-tabulation with 540 cells defined by five categorical independent variables plus one response variable. To find a meaningful generalization out of this complex frequency table, we ran logit log-linear regression analyses. Surprisingly, we have found that there is no single effect of the duration feature in all phonetic contexts on Korean speakers' perception of the voicing contrasts of English stops. Instead, the logit log-linear analyses reveal that there are interaction effects among phonetic contexts (=C), the places of articulation of stops (=P), and the voicing contrast (=V), and among duration (=T), phonetic contexts, and the places of articulation. To put it in mathematical terms, the distribution of the data can be explained by a simple log-linear equation, logF=${\mu}+{\lambda}CPV+{\lambda}TCP$.

  • PDF