• Title/Summary/Keyword: simple k-curve point

Search Result 52, Processing Time 0.019 seconds

Reference Point Projection Method for Improved Dynamics of Solar Array Hardware Emulation

  • Wellawatta, Thusitha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.126-128
    • /
    • 2018
  • Solar array simulator (SAS) is a special DC power supply that regulates the output voltage or current to emulate characteristics of photovoltaic (PV) panels. Especially, the control of SAS is a challenging task due to the nonlinearity in the output curve, which is dependent on irradiance as well as temperature and is determined by panel materials. Conventionally, both current-mode control and voltage-mode control should be alternated by partitioning the operating curve into multiple sections, which is not only for the measurement noise problem with the feedback sensing but also for the control stability issue near the maximum power point. However, the occurrence of transition among different controllers may deteriorate the overall performance. To eliminate the mode transitions, a novel single controller scheme has been introduced in this paper, where the reference operating projection technique enables simple, smooth and numerically stable control. Theoretical consideration on the loop stability issue is discussed and the performance is verified experimentally for the emulation of a PV panel data in view of stability and response speed.

  • PDF

Static Optimal Shapes of Tapered Beams with Constant Volume (일정체적 변단면 보의 정적 최적 단면)

  • Lee Tae-Eun;Kang Hee-Jong;Kim Kwon-Sik;Lee Byoung-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.79-86
    • /
    • 2005
  • This paper deals with the static optimal shapes of simple beams which are subjected to a vertical point load. The area and second moment of inertia of the regular polygon cross-section of the tapered beams are determined, which have always same volume and same length for the parabolic taper. The differential equation governing the elastic curve is derived using the small deflection theory and solved numerically. By using the numerical results of deflections, rotations and bending stresses of such beams, the optimal shapes, namely, optimal section ratios, of the beams subjected to a single point load according to variation of load position parameters are determined and presented in the figures. Examples of the static optimal shapes for beams with a single load and multiple loads are reported. The design process of this study can be used directly for the minimum weight design of simple beams.

  • PDF

Bayesian Hypothesis Testing in Multivariate Growth Curve Model.

  • Kim, Hea-Jung;Lee, Seung-Joo
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.81-94
    • /
    • 1996
  • This paper suggests a new criterion for testing the general linear hypothesis about coefficients in multivariate growth curve model. It is developed from a Bayesian point of view using the highest posterior density region methodology. Likelihood ratio test criterion(LRTC) by Khatri(1966) results as an approximate special case. It is shown that under the simple case of vague prior distribution for the multivariate normal parameters a LRTC-like criterion results; but the degrees of freedom are lower, so the suggested test criterion yields more conservative test than is warranted by the classical LRTC, a result analogous to that of Berger and Sellke(1987). Moreover, more general(non-vague) prior distributions will generate a richer class of tests than were previously available.

  • PDF

A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field (233-비트 이진체 타원곡선을 지원하는 암호 프로세서의 저면적 구현)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1267-1275
    • /
    • 2017
  • This paper describes a design of cryptographic processor supporting 233-bit elliptic curves over binary field defined by NIST. Scalar point multiplication that is core arithmetic in elliptic curve cryptography(ECC) was implemented by adopting modified Montgomery ladder algorithm, making it robust against simple power analysis attack. Point addition and point doubling operations on elliptic curve were implemented by finite field multiplication, squaring, and division operations over $GF(2^{233})$, which is based on affine coordinates. Finite field multiplier and divider were implemented by applying shift-and-add algorithm and extended Euclidean algorithm, respectively, resulting in reduced gate counts. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 49,271 gate equivalents (GEs), and the estimated maximum clock frequency is 345 MHz. One scalar point multiplication takes 490,699 clock cycles, and the computation time is 1.4 msec at the maximum clock frequency.

Analysis of dynamic behavior for truss cable structures

  • Zhang, Wen-Fu;Liu, Ying-Chun;Ji, Jing;Teng, Zhen-Chao
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.117-133
    • /
    • 2014
  • Natural vibration of truss cable structures is analyzed based upon the general structural analysis software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic response analysis of truss cable structures is carried out via time-history method. Introducing three natural earthquake waves calculated the results including time-history curve of vertical maximal displacement, time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, and variation curve of maximal internal force of member along span are presented. The results show the formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These provide convenient and simple design method for practical engineering.

A Novel Digital Over Current Relay with Variable Time-Current Characteristics for Protective Coordination

  • Park, M. S.;P. S. Cho;Lee, S. J.;S. H. Hyun;Kim, K. H.
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.83-88
    • /
    • 2002
  • An over current relay(OCR), one of the most frequently used protective devices, has time-current characteristics (TCC) to control its trip time according to the current level. It is because an appropriate operating time interval is necessary for coordination with other protective devices. A set of TCC curves of an OCR is, in general, given by the supplier from which a curve is selected by the operator. Therefore, in many cases, it is impossible to consider the operation condition of the given power system exactly. A novel concept of an OCR is suggested in this paper. The proposed OCR has an internal correction module so that it may produce the most adequate TCC curve according to the given protective information for coordination with other devices. With the generated TCC curve, a variety of operation and coordination conditions can be taken into consideration in an effective manner. The suggested OCR is applied to a simple test power system to show very promising results from a coordination point of view.

Hardware Design of Elliptic Curve processor Resistant against Simple Power Analysis Attack (단순 전력분석 공격에 대처하는 타원곡선 암호프로세서의 하드웨어 설계)

  • Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.143-152
    • /
    • 2012
  • In this paper hardware implementation of GF($2^{191}$) elliptic curve cryptographic coprocessor which supports 7 operations such as scalar multiplication(kP), Menezes-Vanstone(MV) elliptic curve cipher/decipher algorithms, point addition(P+Q), point doubling(2P), finite-field multiplication/division is described. To meet structure resistant against simple power analysis, the ECC processor adopts the Montgomery scalar multiplication scheme which main loop operation consists of the key-independent operations. It has operational characteristics that arithmetic units, such GF_ALU, GF_MUL, and GF_DIV, which have 1, (m/8), and (m-1) fixed operation cycles in GF($2^m$), respectively, can be executed in parallel. The processor has about 68,000 gates and its simulated worst case delay time is about 7.8 ns under 0.35um CMOS technology. Because it has about 320 kbps cipher and 640 kbps rate and supports 7 finite-field operations, it can be efficiently applied to the various cryptographic and communication applications.

The Computation of the Voronoi Diagram of a Circle Set Using the Voronoi Diagram of a Point Set: II. Geometry (점 집합의 보로노이 다이어그램을 이용한 원 집합의 보로노이 다이어그램의 계산: II.기하학적 측면)

  • ;;;Kokichi Sugihara
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • Presented in this paper are algorithms to compute the positions of vertices and equations of edges of the Voronoi diagram of a circle set. The circles are located in a Euclidean plane, the radii of the circles are not necessarily equal and the circles are not necessarily disjoint. The algorithms correctly and efficiently work when the correct topology of the Voronoi diagram was given. Given three circle generators, the position of the Voronoi vertex is computed by treating the plane as a complex plane, the Z-plane, and transforming it into another complex plane, the W-plane, via the Mobius transformation. Then, the problem is formulated as a simple point location problem in regions defined by two lines and two circles in the W-plane. And the center of the inverse-transformed circle in Z-plane from the line in the W-plane becomes the position of the Voronoi vertex. After the correct topology is constructed with the geometry of the vertices, the equations of edge are computed in a rational quadratic Bezier curve farm.

  • PDF

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.

Development of a Korean Geriatric Suicidal Risk Scale (KGSRS) (한국형 노인자살위험 사정도구 개발)

  • Lee, Sang Ju;Kim, Jung Soon
    • Journal of Korean Academy of Nursing
    • /
    • v.46 no.1
    • /
    • pp.59-68
    • /
    • 2016
  • Purpose: Increase in suicide rate for senior citizens which has become widespread in our society today. It is not a normal social phenomenon and is beyond the danger level. The contents of this study include Korean senior citizens' suicide related risk factors and warning signs, and the development of a simple Geriatric Suicide Risk Scale. Methods: This study is Methodological Research to verify reliability and validity of the Geriatric Suicide Risk Scale according to the tool development process suggested by Devellis (2012). Results: For predictive validity assessment, high suicide screening accuracy was showed with an Area under the ROC curve (AUC) of .93. For the optimal cutoff point of 11, sensitivity was 93.9%, and specificity, 75.7% which are excellence levels. Cross validity for assessment of generalization possibility showed the Area under the ROC curve (AUC) as .82 and in case of a cutoff point of 11, sensitivity was 73.7%, and specificity, 65.9%. Conclusion: When it comes to practical nursing, it is significant that the Korean Geriatric Suicide Risk Scale has high reliability and validity through adequate tool development and the tool assessment step to select degree of suicide risk of senior citizens. Also, it can be easily applied and does not take a long time to administer. Further, it can be used by health care personnel or the general public.