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Abstract

This paper suggests a new criterion for testing the general linear
hypothesis about coefficients in multivariate growth curve model. It
is developed from a Bayesian point of view using the highest posterior
density region methodology. Likelihood ratio test criterion(LRTC) by
Khatri(1966) results as an approximate special case. It is shown that
under the simple case of vague prior distribution for the multivariate
normal parameters a LRTC-like criterion results; but the degrees of
freedom are lower, so the suggested test criterion yields more conser-
vative test than is warranted by the classical LRTC, a result analogous
to that of Berger and Sellke(1987). Moreover, more general (non-vague)
prior distributions will generate a richer class of tests than were previ-
ously available.
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1. INTRODUCTION

The model considered here is the generalized growth curve model first
proposed by Potthoff and Roy(1964). The model is defined as

prN = prmeququ + gpr: (11)

where 7 is unknown, X and A are known matrices of ranks m < pandgqg < N,
respectively. Further the columns of € are independent p-variate normal with
mean vector 0 and common covariance matrix 3, i.e. Vec(€') ~ N(0,Z®1Iy).
In general, p is the number of time(or spatial) points observed on each of N
cases.

Several examples of growth curve applications for the model (1.1) were
given by Potthoff and Roy(1964), Zerbe and Jones(1980), Rao(1977, 1984),
and Lee(1988) among others. In particular, the polynomial curves in time
as models for growth curves are an important example. This model comes
about from (1.1) by letting

(1t 2 ... t’{“i |
1ty t3 ...t~
X = ,
|1 t, & tmt
and _
e 0 ... ... 0]
0, e 03 ... 0
A = .. -
0y 0y ... ... e
where e; is a N; x 1 vector all of whose components are unity and 0; is the
null vector of size N;, 9., N; = N;i = 1,...,q. Therefore, when m = 2, a

linear model results from the polynomial growth curve models:

E[ylj, Y259+« ,ypj] - -(Tlu + T2ut1, Tiu + T2ut2a vey Ty + T2utp)’ (12)
where Y = {yi;}, 7= {me},and XL Nioy < j< T Niy u=1,...,q.

The analysis of the model (1.1), which can be regarded as a special case
of generalized multivariate analysis of variance model has been subsequently
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studied by many authors (including Bayesian statisticians). A brief survey
of such studies(with references) is in Geisser(1980) and Rao(1987). An im-
portant class of studies, where there has been much activity, concerns the
test criterion for general linear hypothesis under the growth curve model.
Potthoff and Roy(1964) proposed a couple of test criteria by means of the
maximum root criterion by Roy(1938) and the trace criterion by Lawley(1938)
and Hotelling(1951). On the other hand, Khatri(1966) derived the likelihood
ratio test criterion for testing the linear hypothesis. However, a Bayesian
criterion for testing the linear hypothesis under the growth curve model has
not been seen yet.

This paper concerns hypothesis testing in multivariate growth curve anal-
ysis from a Bayesian point of view. Generally, estimation and prediction are
of much greater interest to Bayesian statisticians than is hypothesis testing,
but there are those situations in which hypothesis testing is desirable and
appropriate. Those situations are the ones with which we will be concerned
in this paper.

2. BAYESIAN HIGHEST POSTERIOR DENSITY(HPD)
REGION TESTING

Under the growth curve model (1.1), a variety of hypotheses concerning
the elements of 7 are easily formulated as CrD = ®¢ where D is a g x d
matrix of rank d < q and C is a ¢ x m matrix of rank ¢ < m. For example,
in the previously discussed linear case (1.2), one may be only interested in
testing that all the groups “grew” at an equal rate(Hp : T3 = ... = Ty).
Hence,

CrD = (0,1)D = 0,

where
. Ty T12 ... Tig
T = ¥
To1 T22 ... T2q
and D is any ¢ x (¢ — 1) matrix of rank ¢ — 1 such that the columns of D

sum to zero.

HPD regions introduced by Box and Tiao(1973, p.122) are ideally suited
for testing the hypotheses of interest in Bayesian growth curve analysis. This
is because in higher dimensions we are generally interested in the event that
some vector or matrix belongs to a particular region, and this event can
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generally be specified either directly or in terms of some monotonic functions.
This can be stated more specifically. From the properties of HPD regions, we
see that if R, is an HPD region of probability content (1 — a), then the event
® = C7D € R, is equivalent to the event that

f(@1Y) > a, (2.1)

where o is a suitably chosen positive constant and f(® | Y) denotes a
posterior density of ®. It follows that a particular matrix ®, is covered
by HPD region of content (1 — ) if and only if

Pr(f(2|Y) > f(2]Y)]Y) < 1-a. (2.2)

In this expression, the density function is treated as a random variable. Thus,
once the posterior distribution of the quantity f(® | Y) or some monotonic
functions of it can be determined, our interest in testing Hy : ® = &, can
be resolved.

The probability statements defining HPD regions can be derived directly
from the posterior distribution; any kind of prior information may be used(
vague or not) so that non-vague prior distributions will lead to a rich family
of tests; and no multidimensional integrations are involved once we have the
posterior distribution for ®(we must of course be able to evaluate the integral
for the cdf to calculate the probability content of the distribution). In the
sequel, we will adopt this HPD approach to develop a Bayesian test for the
growth curve model.

2.1. Posterior Density of ®

From the generalized growth curve model (1.1), we can express the likeli-
hood of r and ¥ as

L(r,%) oc| 51 M2 exp{—%trE‘l(Y _ XrA)(Y - xTA)'} . (@23)

In order to express the notion of “knowing little”, and to provide a
“reference-type prior” that often produces frequentist-types of results, we
adopt a vague, Jeffreys-type of prior density(see Geisser and Cornfield, 1963;
Jeffreys, 1961) for 7 and the precision matrix, £71,

g(r, =71 o| B |EF/2, (2.4)
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Results are easily extendible to natural conjugate families of prior distribu-
tions with little change in results(except for changes in the numbers of degrees
of freedom).

Since posterior inference about 7 are made most easily from the marginal
posterior density of 7, integrating the joint posterior density of 7 and precision

matrix with respect to £7! yields the marginal posterior density for 7 (see
Geisser, 1970):

1Y) = [ LDl 5 s (2.5)

Q-1 ~(N-g¢)/2 R |™/2
- 22 }:(IN 7 m)l | (XSTX) + (r = ARG — 7 [,

where

N > m+q-1,

7 = (X'STIX)'X'STI'YA'(AA) !, (2.6)
S = Y(y-A(AA)'A)Y,
R = (AA)'AY'[S7! - STIX(X'S™!X)'X'S!|YA'(AA) "1 + (AA) !,

Here I'; ()\) denotes the multivariate gamma function,
T,(\) = 79 VAP DA = 1/2) - - T(A — q/2 + 1/2).

It is to be noted that the marginal posterior distribution of 7 in (2.5)
follows a matrix T-distribution with N degrees of freedom(cf. Press, 1982;
Dickey, 1967); we shall, as the previous authors, say that the m x ¢ matrix
of parameters 7 is distributed as T,,,((X'S™!X),R™!,7, N).

Lemma 1 (Box and Tiao, 1973). Let the m x q matrix of parameters 8 is
distributed as T,,,(P,Q, 2, N). Let C be ¢ x m(c < m) matrix of rank ¢
and D be ¢ x d(d < q) matrix of rank d. Suppose ¥ is the ¢ x d matrix of
random variables obtained from the linear transformation ¥ = C6D. Then
¥ is distributed as

T..((CP!C)"!,D'QD,COD, N — ¢ — m + ¢ + d). (2.7)
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From Lemma 1 we see that the linear transformation ® = CrD has the
posterior distribution T, ((C(X'S™!X)"!C)"!, D'R™!D, ®, N —g—m+c+d)
with density
f(@ly) o IC(XIS—lx)—ICI + (@ _ @)(D/R——ID)—I(@ _ :}?)II—(N——q‘—m+z:+d)/27

(2.8)
where & = C7D.

Various theorems by Dickey(1967) allow us to make conditional(or marginal)
inferences about a specific columns or rows of ®.

2.2. HPD Region Test Criterion
The density function f(®|Y) is a monotonic decreasing function of
M = —vlog B(®), (2.9)
where, from (2.8),
B |IC(X'S~IX)~1C|
|C(X'S-1X)-1C’ + (& — ®)(D'R-'D)-1(& — ®)|’

and v = N —m — ¢ + 1. Thus, the event f(®|Y) > f(Po|Y) is equivalent
to the event M < —vlog B(®,), where B(®,) is obtained by substituting ®,
for ® in (2.10). This leads to the HPD region criterion (2.2) for testing the
general linear hypothesis as accepting Hg : ® = &y if

B(®)

(2.10)

Pr(M < —vlogB(®,)) <1-« (2.11)

for some preassigned a. Since the exact distribution of M is complicated(see
e.g. Schatzoff, 1966; Pillai and Gupta, 1969), to carry out the test, we need
an asymptotic result for M. Such a result is given in the next section.

3. APPROXIMATE TEST CRITERION

The asymptotic distribution of M = —v log B(®) is obtained from the
Box approximation (Box, 1949; Anderson, 1984). For our context the result
is given in the theorems below.

Lemma 2. The h-th posterior moment of B(®) is

Fc[%(N —q—m+c)+ h]I‘c[%(N —qg—m+d+c)

E(B(2)|Y) = Lof3(N —g=m+ T[N —g—m+d+c)+h]’

(3.1)
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and this holds for all 4 for which the gamma function exist including purely
imaginary h.
Proof. Using the matrix T density integral(see equation (2.5)) :

n™/2T, (d‘;ﬂ)

T, (%)
(3.2)
we obtain, from the posterior distribution of ® in (2.8), the characteristic

function of W = —2log B(®):

[ Bl Pty (T - 2)Q 7 (T - Q)| MAT =

E(e'itW) — E(B(@)_Z“)
|C(XIS—lx)—lcll(N—q—m+c—2it)/2ID’R—IDI—c/2
|IC(X'S-1X)~1C' + (& — ®)(D'R-'D)-1(& — &)'|*/2
L. [3(N —q—m+c) - 2it]
T[i(N —q—m +d+c) — 2it]

- A (3.3)

where § = N —q¢—m + c+d + 2it and

A_ LGN —g-mtectd)
L.(3(N —g~m+¢))

Letting h = —2it gives the result.

Let us define U(®) = B(®)"*, v = N —m —g+ 1, so that M =
~21log U(®). Using Lemma 2, we obtain the h-th posterior moment of U(®)
as

E(U@®)"|Y) = EB@®)"™’Y)

L(3(v +c+d - D)L (z(v + c = 1+ vh))
Fc(%(” tec— 1))Pc(% v+c+d—1+vh))’

(3.4)

and this holds for all & for which the gamma. functions exist including purely
imaginary A. Thus we have the following theorem.

Theorem 3. The asymptotic cumulative posterior distribution of M =
—vlog B(®) = —2log U(®) is given by

Pr(M < Mo |Y) = Pr(x7 < pMo) (3.5)
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Y2
+ @{Pr(xﬁﬂ < pMo) — Pr(x} < pMy)}

1
+ F[’M{PT’(X?-H < pM,) — Pr(x? < pMy)}

— % {Pr(x}. < pMo) — Pr(x < pMo)}]

+ O(87%),
where f =cd, p=1+ %(c+d—3), B=vp, v = %(c2+d2—5), and
Y4 = 2% + ——Cd—[sc“ + 3d* + 10¢%d? — 50(c? + d?) + 159]
2 ' 1920 '
Proof. Set
v 1 v 1 )
a =b=c¢ z = 2 & = -2-(19—1), Yy = o and n; = —2—(d+]—1).
(3.6)
The equation (3.4) can be expressed as
b Yi h a
E(U(@)hIY) — K(H:’:lyik> H/;=1F(mk(l+h)+£k), :0’1"”,
[Ti=1 7% Hj:lF(yj(1+ h) + n;)
(3.7)

where K = T.(3(v+c+d—1))/T.(3(v+c—1)) which does not depend on .
Since ¢, zx = Y5-; y; = cv/2 and E(U(®)° | Y) = 1, the random variable
U(®), whose moments are certain functions of gamma functions, satisfies
the conditions for Box’s(1949) theorem of a general asymptotic expansion of
the random variable: such that if we take a fifth order approximation to the
distribution of M, Box’s theorem (see Anderson, 1984, Theorem 8.5.1) gives
the result.

If the first term of (3.5) is used, the error is of order 372; if the second
term is used, the error is of order ~*. Thus the asymptotic HPD region of
probability content of the event in (2.11), i.e.

F(@1Y) > f(®]Y) = M < —viogB(®,),

may be given by (3.5). Taking just the first two terms of the Box approximation
for illustration, gives following asymptotic result.

?

Corollary 1. Under the growth curve model (1.1), the asymptotic HPD
region criterion for testing Hy : & = ®¢; & = CrD with significance level a
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is to accept Hy if
72
Pr(x% < pMo)+@{Pr(xi+4 < pMg) — Pr(x% < pMo)} < 1-a, (3.8)

where pMo = —BlogB(®,) and =N —m —q+1+ -21-(c+d - 3).

Proof. Applying the first two terms of (3.5) with remainder term O(3™*)
to (2.11) gives the result.

If we add the more term(third term) of (3.5) to the left hand side of (3.7),
we would expect the better accuracy of the test(see Table I). In particular case
where ®; = 0, the test criterion in Corollary 1 is similar to Box approximation
of the likelihood ratio criterion by Khatri(1966), except that N —q—p+m —
(¢ = d + 1)/2 in Khatri’s criterion is here replaced by 8 =N —m —¢ +1 —
(c + d — 3)/2(see Table II for the effect of this difference). So the classical
test by Khatri is different from the suggested Bayesian test in that (i) the
classical test depends on the dimension of the response vector of the model
(1.1), while the suggested test does not; (ii) the suggested test can be used
for any value of ¥y, but the classical test can only be applicable for ®, = 0.

4. NUMERICAL STUDIES

The goal of this section consists of two numerical studies: (i) a study per-
taining to the overall performance of the Box’s approximation for the distribu-
tion of M in (3.5); (ii) a relative comparison between the classical likelihood
ratio test by Khatri(1966) and the suggested Bayesian test(see Corollary 1)
in terms of p—value. For the latter test, we use p—value(Bayesian analogy
to the classical exact significance level) for a Bayesian measure of evidence
against the null hypothesis, so that, for given My, the test in Corollary 1 may
yield

"
p—value = 1—-[Pr(x}, < PM0)+-6-5{P7"(X§+4 < pMg) — Pr(xF < pMo)}].

4.1. Performance of the Box’s approximation

The probability of Pr(M < M,|Y) in (3.5) were computed using each of
the three types of the Box’s approximation: (i) Boz; which uses only the first
term on the right hand side of (3.5) with the remainder O(872%); (ii) Boz,
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which uses the first and second terms of (3.5) with remainder O(3~%); (iii)
Boz;z that uses all three terms of (3.5) with remainder O(3¢). The perfor-
mances are made by calculating the error of approximation for significance
levels of 0.01 and 0.05 for » from 2 to 60, ¢ = 3,4, and d = 2,4,6. Exact
critical values of My of M for each v, ¢, and d were obtained by using the
correction factors in Table 1 of Anderson(1984, p.609) and the probabilities
Pr(M < M|Y) were computed using each type of the three approximations.
Errors of the three approximations for selected values from computations are
given in Table I.

As would be expected, Box’s approximation with the more terms in (3.5)
yields the better accuracy for approximating the distribution of M. In gen-
eral, the error of the asymptotic distribution for M becomes larger as the
value of v decreases to less than 10. Boz; approximation highlights this ten-
dency. The maximum errors due to Bozy and Bozs are less than 0.019 and
0.008, respectively; in most cases the errors are considerably less. Thus, from
the table, we may safely expect that, regardless of dimension p, if » > 10
the suggested test(see Corollary 1) using Bozs(or Bozj) gives almost exact
Bayesian test result for testing the linear hypothesis of the growth curve
model.

4.2. Comparison with Likelihood Ratio Test Criterion(LRTC)

In this subsection, we compare the suggested Bayesian test criterion(BTC)
with the classical LRT'C by Khatri(1966). The two criteria were compared
in terms of p—value obtained from testing Ho : @ = 0. This is to study
the overall effectiveness of BTC and to identify some situations where one
would(and would not) expect good test result. As mentioned in the previous
section, when Hj is true, Bozy approximation to LRTC is similar to Corollary
1 except for the constant 8 = N —m —q¢+ 1+ (c+ d — 3)/2 in (3.7);
LRTC replaces the constant by 3* = N —q¢—p+m — (c —d + 1)/2. If the
hypothesis is not true, LRTC involves complex distribution so that the power
function of the criterion still remains uninvestigated(see, Kabe, 1986). Thus,
the comparison between the two test criteria were made by p—value. This
was done by following set up : For a given significance level a, critical value of
LRTC was found by use of modified version of Corollary 1(using constant 3*
instead of #). This enabled us to get the value of pMy = —3" log B(®, = 0)
for the given significance level(p—value of LRTC). Then, from Corollary 1,
we evaluated p—value of BTC corresponding to the value pMp.
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Table I. Errors of the Three Approximations for o = .05 and .01:

v

3

6
10
15
20
30
60

3

6
10
15
20
30
60

3

6
10
15
20
30
60

3

6
10
15
20
30
60

Bo:z:l

1180
399
159

69
46
23

0

1870
72
302
153
7
52
0

374
136
58
26
13
7

0

548
228
98
50
29
15
0

Error = {(1 - @) - approx. prob.} x 10°

d=2

Boxzs

130
15
-1
-8

170

Bozxj

15

-4
-8

-

-5

42
13
-7

-12

-

10

WO WO WD

| ] L
OO O W v e

Boxy

2317
972
440
239
121

61
30

2797
1276
588
302
204
103
34

639
293
136
74
42
17

731
373
183
92
56
28
10

d=4

Bozx,y

636
107
23
26
-9
0
14

1009
191
25

3
20
13
10

Bozxs

110
14

21
-10
-1
14

260
27
-12
-7
16
13

-3
[

WWwo oo W

Bozx

3357
1702
838
453
283
144
36

3643
1967
1009
548
359
163
41

828
476
247
132
87
40
10

867
534
290
166
107

55

11

d=26

Bozs

1496
329
65
25
14
10

0

1882
460
100

26
26
-6
-7

519
135
30

-1
-2

599
182
45
18
10

-3

Bozxs

470
52
4

|4

-1

726
84

-5
14
-9
-7

245

91



92 Hea-Jung Kim and Seung-Joo Lee

Table II. p—Values of BTC for o = .05, .01 and ¢ = 6.

p=6 p=1
a m ¢ N d 2 4 6 2 4 6
05 3 3 20 0.01171 0.00802 0.00636 0.00561 0.00314 0.00221
30 0.02466 0.02003 0.01740 0.01840 0.01364 0.01112
40 0.03133 0.02716 0.02457 0.02615 0.02140 0.01857
50 0.03526 0.03163 0.02927 0.03096 0.02662 0.02774
60 0.03784 0.03466 0.03253 0.03096 0.03029 0.02774
05 4 3 20 0.03259 0.02936 0.02756 0.01921 0.01513 0.01310
30 0.04008 0.03766 0.03613 0.03131 0.02738 0.02502
40 0.04306 0.04121 0.03996 0.03667 0.03341 0.03131
50 0.04467 0.04317 0.04214 0.03965 0.03693 0.03510
60 0.04567 0.04442 0.04354 0.04154 0.03922 0.03762
05 4 4 20 0.01767 0.01347 0.01141 0.00855 0.00534 0.00401
30 0.02982 0.02559 0.02306 0.02194 0.01710 0.01442
40 0.03543 0.03186 0.02957 0.02920 0.02467 0.02189
50 0.03862 0.03560 0.03359 0.03354 0.02952 0.02693
60 0.04067 0.03807 0.03630 0.03640 0.03285 0.03049
01 3 3 20 0.00125 0.00080 0.00061 0.00044 0.00022 0.00015
30 0.00362 0.00280 0.00236 0.00239 0.00165 0.00129
40 0.00511 0.00427 0.00377 0.00394 0.00307 0.00258
50 0.00605 0.00528 0.00479 0.00502 0.00416 0.00363
60 0.00670 0.00600 0.00553 0.00579 0.00497 0.00445
01 4 3 20 0.00540 0.00475 0.00441 0.00253 0.00190 0.00161
30 0.00727 0.00673 0.00638 0.00510 0.00432 0.00386
40 0.00806 0.00763 0.00734 0.00640 0.00570 0.00525
50 0.00850 0.00814 0.00790 0.00716 0.00655 0.00614
60 0.00878 0.00847 0.00826 0.00766 0.00712 0.00676
01 4 4 20 0.00229 0.00165 0.00136 0.00083 0.00048 0.00034
30 0.00480 0.00397 0.00349 0.00312 0.00229 0.00186
40 0.00613 0.00537 0.00489 0.00467 0.00378 0.00326
50 0.00693 0.00625 0.00581 0.00567 0.00483 0.00431
60 0.00746 0.0068¢ 0.00646 0.00637 0.00560 0.00510

p—values of BTC for selected values of N, p, a,¢,d, and m(c < m < p and
d < g < N) from the computations(fixing ¢ = 6) are given in Table II.
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As shown in Table II, p—value of BTC is uniformly smaller than that of
LRTC(p—value of LRTC is equal to a). This indicates that LRTC weights
the evidence against Ho more heavily than is warranted by the posterior
probability distribution for BTC, a result analogous to Berger and Sellke(1987).
In this sense, we can say that BTC yields more conservative test than LRTC
does.
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