• 제목/요약/키워드: simple joint method

Search Result 233, Processing Time 0.037 seconds

SCARA robot calibration on off-line programming (오프라인 프로그래밍에서 스카라 로봇의 보정)

  • Jung, Sung-Woo;Son, Kwon;Lee, Min-Chul;Choi, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1832-1835
    • /
    • 1997
  • Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.

  • PDF

A Robust Adaptive Control of Robot Manipulator Based on TMS320C80

  • Han, Sung-Hyun;Jung, Dong-Yean;Shin, Heang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2540-2545
    • /
    • 2003
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Psoas Compartment Block for the Relief of Lumbar and Left Thigh Pain after Operation of Second Lumbar Compression Fracture -A case report- (척추 수술 후 발생된 요부 및 좌측 대퇴전부 통증 치료를 위한 대요근 근구 차단술의 효과 -증례 보고-)

  • So, Keum-Young;Park, You-Jin;Koog, Jong-Soo
    • The Korean Journal of Pain
    • /
    • v.11 no.2
    • /
    • pp.314-316
    • /
    • 1998
  • Psoas compartment block has been used to provide anesthesia and analgesia of hip joint. This block is advocated for relief of pain of various origins in the thigh, leg and lumbar area. A-40-year-old women complained of pain in the left thigh and lumbar area after operation of the second lumbar vertebral compression fracture. To relieve pain, caudal block was performed. This block reduced in lumbar pain but left thigh pain persisted. So, we were performed psoas compartment block using mepivacaine and dexamethasone, which relieved the pain in the left thigh and lumbar area. We recommend psoas compartment block as useful and simple method for patients with thigh and lumbar area pain, especially when the epidural block is not feasible.

  • PDF

Tendon-driven Adaptive Robot Hand (와이어 기반의 적응형 로봇 핸드)

  • Yu, Hong-Seon;Kim, Min-Cheol;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.258-263
    • /
    • 2014
  • An adaptive robot hand (AR-Hand) has a stable grasp of different objects in unstructured environments. In this study, we propose an AR-Hand based on a tendon-driven mechanism which consists of 4 fingers and 12 DOFs. It weighs 0.5 kg and can grasp an object up to 1 kg. This hand based on the adaptive grasp mechanism is able to provide a stable grasp without a complex control algorithm or sensor system. The fingers are driven by simple tendon structures with each finger capable of adaptively grasping the objects. This paper presents a method to decide the joint stiffness. The adaptive grasping is verified by various grasping experiments involving objects with different shapes and sizes.

Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction (기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법)

  • Lee, Woongyong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

Member capacity of columns with semi-rigid end conditions in Oktalok space frames

  • Zhao, Xiao-Ling;Lim, Peter;Joseph, Paul;Pi, Yong-Lin
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • The Oktalok nodal connection system is an aesthetic and efficient system. It has been widely used throughout Australia. The paper will briefly introduce the concept and application of the Oktalok nodal system. The existing design method is based on the assumption that the joints are pin-ended, i.e., the rotational stiffness of the joints is zero. However the ultimate capacity of the frame may increase significantly depending on the rotational stiffness of the joints. Stiffness tests and finite element simulations were carried out to determine the rotational stiffness of the Oktalok joints. Column buckling tests and non-linear finite element analyses were performed to determine the member capacity of columns with semi-rigid end conditions. A simple formulae for the effective length factor of column buckling is derived based on the above experimental and theoretical investigations.

A Study of Development and Real Time Control of Small Size Robot by Cable Reduction (케이블 감속을 이용한 소형 로봇의 개발과 실시간 제어에 관한 연구)

  • Hong, Jong-Sung;Lee, Jung-Wan
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.251-260
    • /
    • 2002
  • In this thesis, a three degrees of freedom robot, which is able to provide sufficient precision for various robot researches, has been developed. The cable mechanism is used as a basic transmission of robot joints. Based on an optimal design strategy, link and joint parameters are determined and then overall geometry of the robot is designed. As an architecture of robot control, real time control system using real time linux and RtiC-Lab(Real Time Controls Laboratory) is developed. This system, written in C and based on Linux O/S, includes text editor, compiler, downloader, and real time plotter running in host computer for developing control purpose. Using these hardware and software, simple PD position control is implemented, the results shows the effectiveness of the system.

  • PDF

Design of a Real Time Adaptive Controller for SCARA Robot Using Digitl Signal Process (디지탈 신호처리기를 사용한 스카라 로보트의 실시간 적응제어기 설계)

  • 김용태;서운학;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.472-477
    • /
    • 1996
  • This paper presents a new approachtothe design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The prpposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Entropy-based Correlation Clustering for Wireless Sensor Networks in Multi-Correlated Regional Environments

  • Nga, Nguyen Thi Thanh;Khanh, Nguyen Kim;Hong, Son Ngo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.85-93
    • /
    • 2016
  • The existence of correlation characteristics brings significant potential advantages to the development of efficient routing protocols in wireless sensor networks. This research proposes a new simple method of clustering sensor nodes into correlation groups in multiple-correlation areas. At first, the evaluation of joint entropy for multiple-sensed data is considered. Based on the evaluation, the definition of correlation region, based on entropy theory, is proposed. Following that, a correlation clustering scheme with less computation is developed. The results are validated with a real data set.

Development of on-line inverse kinematic algorithm and its experimental implementation (온라인 좌표 역변환 알고리듬의 개발과 이의 실험적 수행)

  • 오준호;박서욱;이두현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.16-20
    • /
    • 1988
  • This paper presents a new algorithm for solving the inverse kinematics in real-time applications. The end-tip movement of each link can be resolved into the basic resolution unit, .DELTA.l, which depends on link length, reduction ratio and resolution of the incremental encoder attached to the joint. When x- and y-axis projection of the end-tip movement are expressed in .DELTA.l unit, projectional increments .DELTA.x and .DELTA.y become -1, 0 or I by truncation. By using the incremental computation with these ternary value and some simple logic rules, a coordinate transformation can be realized. Through this approach, it should be noted that the floating-point arithmetic and the manipulation of trigonometric functions are completely eliminated. This paper demonstrates the proposed method in a parallelogram linkage type, two-link arm.

  • PDF